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I. INTRODUCTION 

Environmental contamination with crude and refined 
petroleum which results from increasing demands for oil 
products is among the global environmental issues in this 
century (Sojinu & Ejeromedoghene, 2019). Excessive use of 
petroleum products have led to an intensification of 
environmental pollution (Pinedo et al., 2013). Major 
components of the crude petroleum are hydrocarbons, which 
consist of saturated, unsaturated and polycyclic aromatics; 
which are considered as seriously hazardous environmental 
pollutants (Lundstedt et al., 2007; Dudhagara et al., 2016). 
Even with the advancement in energy technology and serious 
global ecosystem challenge, the world still depends 
significantly on petroleum for energy production, commerce, 
and industry; making its exploitation and transport 
unavoidably a continuous process. This situation exposes 
aquatic and terrestrial environments to constant risk of oil 
spills (Jin et al., 2019). The major problem associated with 

petroleum hydrocarbons is toxicity to plants, humans and 
environment (Arellano et al., 2017; Yadav et al., 2018). 
Damaging effects of contamination due to petroleum and its 
derived products on plant, animals, microbes and ecosystem 
have been documented (Ordinioha & Brisibe, 2013; 
Freedman, 2018). 

The degree of toxicity of crude oil and its products depends 
on the chemical compounds present and their concentration 
(Environmental Protection Agency; EPA, 1999). In addition, 
spilled oil volume, residual oil volume on site, impacted area 
environment, response, recovery, and cleanup timing 
determines crude oil toxicity (Mohamadi et al., 2016). 
Different biological species, including both eukaryotes and 
prokaryotes, and their life stages respond differently to the 
pollutants (Hao et al., 2004). Depending on the climatic 
conditions, hydrodynamics and geographical location, spilled 
crude oil undergoes several weathering processes, like 
evaporation, dissolution, dispersion, sedimentation, photo-
oxidation and biodegradation (Acosta-González et al., 2015). 
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When hydrocarbon contamination prolonged for a long time, 
the compounds become strongly bound and only recalcitrant 
fraction of hydrocarbons which are not readily bioavailable 
prevail (Semple et al., 2001). Although it may be considered 
less toxic than freshly contaminated environment, the effect 
of persistent compounds in a prolonged contaminated site is 
enormous (Jonker et al., 2006). As various petroleum 
components fade in the course of weathering, polycyclic 
aromatic hydrocarbons (PAHs) remain entrapped in the soil 
matrix which pose a great health risk to humans and 
environment.  

Polycyclic aromatic hydrocarbons (PAHs) are a group of 
organic compounds comprised of two or more condensed 
aromatic rings (Speight, 2006). Physically, they are described 
as mostly colorless, white, or pale yellow solids with varying 
boiling and melting points (Abdel-Shafy & Mansour, 2015). 
Chemically they are comprised of two or more benzene rings 
bonded in linear, cluster, or angular arrangements and are 
found in many petroleum mixtures (Arey & Atkinson, 2003). 
In addition, they have low vapor pressure, very low aqueous 
solubility, light sensitivity, heat resistance; heat conductivity, 
emit ability, corrosion resistance, and physiological action 
(Akyuz & Cabuk, 2010). PAHs containing up to six fused 
aromatic rings are often known as ‘‘small” PAHs, and those 
containing more than six aromatic rings are called ‘‘large” 
PAHs. The major source of PAHs is the crude petroleum 
however; they are predominantly introduced to the 
environment through natural and anthropogenic combustion 
processes (Speight, 2006). The release of PAHs from natural 
sources is limited to spontaneous forest and grassland fires 
and volcanic emissions. On the other hand the anthropogenic 
sources are diverse ranging from simple processes of 
incineration of wood for cooking and heating to complex 
industrial processes such as petroleum refining, chemical 
manufacturing and vehicle emissions (D’Souza et al., 2015). 
Sediments and soils are the main sinks for all the PAHs 
derived from pyrogenic, petrogenic, and biological activities 
in the environment (Abdel-Shafy & Mansour, 2015). 

In the last few decades, there is increase in soil 
contamination in developing countries which create a great 
concern to environmentalists. Particular interest have been 
focused on petroleum contamination due to its multiple 
effects as a results of the presence of heavy metals and 
polyaromatic hydrocarbons (Devatha et al., 2019). Soil as a 
recipient of oil contaminants undergoes significant 
physicochemical changes such as particle aggregation, soil 
aeration, atterberg limits, permeability, pH, total organic 
carbon and soil minerals nutrients contents which indirectly 
affecting the growth and development of plants and 
microorganisms (Akunwumi et al., 2014; Devatha et al., 
2019; Riazi, 2021). It has been reported that daily maximum 
surface temperature and hydrophobicity of petroleum 
contaminated soils is often higher in contaminated soil and 
anaerobic soil conditions are easily established (Wang et al., 
2013). Heavy crude oil pollution can cause complete 
mortality of marsh vegetation (Lin & Mendelssohn, 2012; 
Mohamadi et al., 2016). Hence, it becomes continuously 
detrimental and finally, its consequences lead to deprived 
crop growth and soil conditions (Aislabie et al., 2004). 

The increasing interest for a clean and sustainable 
environment have made the management of contaminated 

soil to be given priority in developed and developing 
countries with a view to improving human life and ecosystem 
functioning (Kuppusamy et al., 2019). Presently, different 
cleanup technologies are been deployed to recover spilled oil, 
limit its spread or remove it from the environment (Maceiras, 
2016; Xuezhi et al., 2020). Due to the variation in 
environmental media and specific goal designed for a cleanup 
exercise, different remediation technologies have been 
applied in the treatment of hydrocarbon pollution and some 
other novel processes are still emerging (Kuppusamy et al., 
2017). In soil environment, bioremediation is considered an 
ideal technology due to its safety, eco-friendliness, non-
intrusiveness and non-destructiveness (Vidali, 2001). In order 
to enhance the rate and effectiveness of the naturally 
occurring remediation process, addition of different 
stimulation agents have been used (Bento et al., 2005; Barba 
et al., 2021). Phytoremediation which is one form of 
bioremediation use plants to reduce, remove, degrade or 
immobilize environmental contaminants like petroleum 
hydrocarbons (Peer et al., 2006). Phytoremediation relay on 
the fact that plants have extensive root systems which explore 
large volumes of soil and support robust microbial 
populations in the surrounding of the root zone which 
accelerate the rate of disappearance of contaminants (Farrell 
& Germida, 2020). To date, more than 400 plant species have 
been profiled for remediation of different environmental 
contaminants (Vangronsveld et al., 2019; Yaqoob et al., 
2019). 

Pennisetum purpureum (Cenchrus purpureus (Schumach.) 
synonym) is one of many plants that have been exploited in 
phytoremediation studies (Das et al., 2017; Alikasturi et al., 
2020; Boonmeerati and Sampanpanish, 2021). Popularly 
known as elephant grass, it is a major tropical grass with high 
biomass yielding ability and being perennial, it can grow 
under a wide range of conditions (CABI, 2014). It is 
rhizomatous with vigorous root system and can reach up to 4-
7 m in height (Heuzé et al., 2020). Its versatility and extended 
below and above ground parts are also important 
characteristics for a plant with good phytoremediation 
potentials. Its ability to tolerate high concentration of 
pollutants have also been reported (Liu et al., 2009; Kang et 
al., 2015; Osman et al., 2020). Although there are many 
studies that reported the use of P. purpureum in 
phytoremediation, majority of the studies were restricted to 
the treatment of inorganic pollutants. To date, only few 
studies have investigated the use of this plant in 
phytoremediation of petroleum hydrocarbon contaminated 
soil. As a result, the present study intended to investigate the 
ability of the plant to remediate more recalcitrant and more 
persistent PAHs in weathered contaminated soil. This is with 
a view to harness its versatile and invasive potentials in 
environmental cleanup as opposed to being weed of 
agronomic importance.  

 

II. MATERIALS AND METHODS 

A. Sample Collection and Preparation 
Soil samples were collected from two different locations 

(contaminated and uncontaminated) in Kwalkwalawa area, 
Sokoto (13.1246° N, 5.1994° E), Sokoto State Nigeria.  
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Seeds of Elephant grass were planted before they were 
transplanted into the treatment pots. Soils were measured 
proportionately and placed into pots as describe by (Erute et 
al., 2009). Each treatments pots contained a total of 2.5g of 
soil samples consisting of pristine and contaminated soil in a 
ratio of 50%, 35%, 25% and 5% w/w. The control soil was 
made up of uncontaminated soil of equal weight. The setup 
was replicated three times and allowed to absorb moisture for 
two days. Soil physicochemical properties were determined 
as describe by Abubakar et al. (2015). Parameters including 
nitrogen content , Organic matter content,  phosphorus 
content, Total potassium content, PH, Electrical conductivity, 
Calcium, Sodium, Magnesium, Cation Exchange capacity 
were determined.   

B. Planting of Elephant Grass  
These was done as describe by (Erute et al., 2009). The 

2.5g of the soil samples containing different proportion of 
petroleum contaminated soil was amended with 5% of 
organic fertilizer. The plantlets of elephant grass were 
transplanted into the treatment pots, at two weeks growth 
period. The plant growth was monitored for a period of nine 
(9) weeks in the contaminated soil for removal of petroleum 
hydrocarbons; after which the rhizosphere soil was taken for 
microbial analysis. Residual hydrocarbon fractions in the soil 
were also extracted and analyzed using GC-MS. 

C. Microbiological Analysis 
Rhizosphere soil samples were serially diluted and 

inoculated using pour plate techniques. Aliquots (1ml) of six-
fold dilutions were inoculated in to nutrient agar (NA; Oxoid) 
and mineral salt agar (MSA; composed of (per litre at pH 7.4): 
1.2 g KH2PO4, 1.8 g K2HPO4 4.0 g NH4Cl, 0.2 g 
MgSO4.7H2O, 0.1 g NaCl, 0.01 g FeSO4.7H2O, 20 g agar and 
0.01% v/v crude oil) petri plates. The plates were incubated 
for 24hrs and 120hrs respectively after which enumeration of 
total viable and hydrocarbon utilizing bacteria was conducted 
respectively and expressed as CFU/g of soil. Colonies 
growing on MSA were sub-cultured on NA to obtain pure 
cultures and subsequently characterized and identified based 
on their cultural, morphological and biochemical 
characteristics in accordance with determinative schemes of 
Barrow and Feltham (1993) and Benson (2002). 

D. Determination of Total Petroleum Hydrocarbons 
1) Extraction of residual oil 
Ten gram (10 g) each of soil samples were weighed into 

Whatman extraction thimbles (that had been pre-extracted 
with n-hexane). The samples were extracted using the soxhlet 
extractor with 250 mL DCM for 16 h. The extracts were 
further reduced to 10 mL using a rotary evaporator and 
transferred into 4 mL amber vials and kept in the refrigerator 
for analysis. 

2) GC-MS analysis 
Residual oils were analyzed as describe by Dhivya et al., 

(2014) using GC-MS (Agilent Technologies 6890N Network 

GC System and Agilent Technologies 5973 Network Mass 
selective Detector coupled with 7683B Series Injector). The 
model number of the column used was Agilent 122-5533 
capillary column with specification: DB-5ms, 0.25 mm×30 m 
×1 um. The carrier gas used was Helium at a flow rate of 
1.2m1/min with an injection volume of 1ml. The inlet 
temperature was maintained at 230 ºC. The oven temperature 
was initially at 50 ºC and increased to 300 ºC at a rate of          
10 ºC ending with 25 minutes. This temperature was held for 
15minutes with a total run time of 45 minutes. The ionization 
mode used was electron ionization mode at 70 eV. Total Ion 
Count (TIC) was used for compound identification and 
quantitation. The spectrum of separate compounds were 
compared with database of the spectrum of known 
compounds saved in the NIST02 Reference Spectra library. 
Data analysis and peak area measurement was carried out 
using Agilent Chemstation Software. 

E. Statistical Analysis 
Data obtained from the experiments were analyzed using 

descriptive statistics with the aid of Graph Pad Prism 9 
statistical package. 

 

III. RESULTS AND DISCUSSION 

The physicochemical properties of the soil mixture is 
presented in Table I. The contaminated soil was acidic with 
0.76% and 0.067% carbon and nitrogen. The Ca, Mg, K, Na 
and CEC contents (mol/Kg) of the soil were 0.95, 0.25, 0.97, 
0.52 and 106 respectively. The soil was sandy, with low 
nutrients and mineral compositions. The physical properties 
were in the normal prevailing soil conditions obtainable in the 
area. Based on its physicochemical properties, the soil is said 
to be marginal, porous and highly aerated. Therefore, the soil 
conditions are suitable for the growth of P. purpureum since 
previous studies have shown that, the plant is able to survive 
on a broad range of soils ranging from waterlogged clay soils 
to excessively porous sandy soils, under a wide pH range 
(Rahman et al., 2008). Osman et al. (2020) have described P. 
purpureum as indifferent to various soil nutrients and 
minerals concentration. Its growth rate is rarely affected by 
presence of inorganic pollutants like copper, lead and 
chromium. Its biomass generation does not strictly depends 
on nutrients and mineral supplementations (Islam et al., 
2017). These with some other qualities made the plant 
desirable for phytoremediation. 

Bacterial population of the rhizosphere and non-
rhizosphere soil was estimated and presented in Table II. 
Total heterotrophic and hydrocarbon utilizing bacterial 
populations were higher in the rhizosphere, in which 
uncontaminated (RS0) and contaminated (RS35) soil had the 
highest THB population.  

 

TABLE I: SOIL PHYSICOCHEMICAL PROPERTIES 

pH OC % N (%) P 
(mg/Kg) 

Ca 
(mol/Kg) 

Mg 
(mol/Kg) K (mol/Kg) Na 

(mol/Kg) 
C.E.C 
(mol/Kg) 

5.6±0.8 0.76±0.3 0.067±0.2 0.83±0.1 0.95±0.5 0.25±0.1 0.97±0.1 0.52±0.5 10.0 ±1.2 

OC: Organic Carbon, N: Nitrogen, P: Phosphorus, Ca: Calcium, Mg: Magnesium, K: Potassium, Na: Sodium, CEC: Cation exchange capacity 
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TABLE II: BACTERIAL COUNTS OF RHIZOSPHERE OF P. PURPUREUM 

Samples 
Bacterial count (×105cfu/g) 

Total Heterotrophic 
Bacteria (THB) 

Hydrocarbon Utilizing 
Bacteria (HUB) 

NR0 4.00 2.00 
NR5 2.40 2.80 

NR25 3.20 2.20 
NR35 4.90 2.80 
NR50 4.00 3.20 
RS0 64.0 24.0 
RS5 53.0 48.0 

RS25 55.0 36.0 
RS35 64.0 44.0 
RS50 50.0 24.0 

 
Higher HUB were recorded in RS5 and RS35 with.            

4.8 ×105 cfu/g and 4.4 ×105 cfu/g respectively. In the non-
rhizosphere soil, NR35 (THB) and NR50 (HUB) had higher 
bacterial counts whereas NR5 (THB) and NR0 (HUB) had 
the lowest counts respectively. Higher bacterial counts in the 
rhizosphere is a good indication of the plant’s role in 
improving microbial population primarily through root 
exudates secretion. Plants are known to release from their 
roots compounds that are readily utilized by microorganisms 
as carbon and energy sources. Zahui et al., (2021) reported 
the bacterial population in the rhizosphere of P. purpureum 
to reach 7.7×10 6 cfu/g in a constructed wetland and attributed 
it to exudates secreted by plants in the root zone. There are 
indication that high number of PAH degraders also correlates 
well with the amount of PAH biodegradation activity in soil 
and soils with a high total PAH content contain more PAH 
utilizers (105-1010 bacteria per gram of soil) than soils with 
low PAH content (Cerniglia, 1993). Studies have shown that 
plant species, as well as ecological habitats, have a substantial 
influence on the structure of rhizosphere-associated microbial 
populations (Guo et al., 2019). It has been estimated that 
bacterial populations in the rhizosphere, are 10–100 times 
higher than in bulk soil which results to positive rhizosphere 
effect (Pinton et al., 2007; Olahan et al., 2016). Presence of 
rhizosphere have been linked to increased microbial biomass 
in soil which is an important early indicator of improvement 
in soil quality and degradation of contaminants (Gichangi et 
al., 2016).  

A total of 17 bacterial species were isolated and identified 
from the rhizosphere soil as hydrocarbon utilizing species 
(Figure 1). Bacillus mycoides, Bacillus cereus, Bacillus 
lentus, Bacillus subtilis and Bacillus macerans were the 
predominant species with 11.7% rate of occurrence each. 
Staphylococcus intermidius, Flavobacterium interscens, 
Staphylococcus equirum, Micrococcus reseus, Pseudomonas 
aeruginosa, Klebsiella pneumoniae and Bacillus polymexa 
were least prevalent with 5.9% occurrence rate each. 
Occurrence of these bacterial species in rhizosphere of 
several plant species have severally been reported. 
Pseudomonas spp. and Bacillus spp. belong to the largest 
groups of rhizosphere bacteria (Brimecombe et al., 2007). 
Most of these species have been reported as potent 
hydrocarbon degrading bacteria in different environments 
(Margesin et al., 2003; Xu et al., 2018). Their ability to utilize 
hydrocarbons as sole energy and carbon source highlight their 
bioremediation capabilities. The bacterial species earlier 
reported as PAHs degraders are known to produce 
dioxygenase enzymes which are necessary for ring cleavage 
(Gupta et al., 2019). From this results, it is evident that the 

plant’s rhizosphere harbors a diverse bacterial species which 
is important for plant growth and environmental cleanup. 
Bacteria associated with plant roots are often responsible for 
plant growth promotion. Previous culture-independent 
molecular studies have revealed a diverse bacterial species 
capable of nitrogen fixation in the P. purpureum rhizosphere 
of which majority of the species were then unidentified 
(Videira et al., 2013). Plant growth promotion is critical to 
proper growth of plants used in phytoremediation. 
Rhizospheric bacteria help plants through their metabolic 
detoxification mechanisms which convert toxic compounds 
that are detrimental to plant growth into non-toxic substrate 
(Adieze et al., 2012). Additionally, procurement of nutrients 
for plant assimilation and controlling the proliferation of 
phytopathogens are major activities of bacteria within plant 
rhizosphere (Gilick, 2012). The bacterial diversity observed 
in this study is desirable considering the fact that no single 
microbial species is capable of completely degrading 
petroleum hydrocarbon contaminants but entire microbial 
community (Varjani, 2017). Bacteria are the most active 
petroleum degrading microbes as they are primary degraders 
of a wide range of target constituents of the petroleum 
hydrocarbons. They are the most abundant and diverse 
especially in contaminated site (Chikere & Ekwuabu, 2014). 
Most of bacterial species reported so far for their PAHs 
degradation ability are members of Proteobacteria, 
Actinobacteria, and Firmicutes (Cerniglia, 1993; Peng et al., 
2008; Gabriele et al., 2021). 

 
Fig. 1. Occurrence rate of hydrocarbon utilizing bacteria in the 

rhizosphere of P. purpureum. 
 
Analysis of residual oil extract showed a significant 

reduction in concentration of various PAH compounds (Table 
III). Low molecular weight PAHs were more degraded than 
the higher molecular PAHs with the exception of pyrene and 
Benzo (a) anthracene in some of the treatments. In RS5 
naphthalene was reduced by 92.28% and other PAHs in this 
treatment were reduced by > 70% with Benzo (a) anthracene 
and Chrysene been degraded at lower rate. Highest 
degradation rate was observed in treatments with lesser 
contaminants (RS5 and RS25) where degradation of 
individual compounds was > 50% with the exception of 
Pyrene which was reduced by only 30% - a rate that was 
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contrary to that of RS35 where 97.92% degradation rate was 
observed. In RS50 however, low reduction rate was generally 
observed with < 50% reduction in PAHs concentration. 
Despite the recalcitrance of PAHs, the use of P. purpureum 
and associated rhizobacteria as phytoremediators have caused 
significant reduction of its concentration especially where the 
contamination is at lower level. In all the treatments, 
naphthalene degradation was prominent possibly due to its 

lower molecular weight. In-vitro biodegradation studies have 
shown that naphthalene can be entirely degraded by bacteria 
even when a single bacterium was used in the culture broth 
(AL Sbani et al., 2020). Studies have shown that PAHs with 
four and five fused benzene rings are more resistant to 
biodegradation than PAHs with two or three rings (Cerniglia, 
1993).  

 
TABLE III: PERCENTAGE REMOVAL OF PAHS IN THE RHIZOSPHERE OF P. PURPUREUM 

Compound No. of Rings 
Degradation rate (%) 

RS5 RS25 RS35 RS50 
Naphthalene 2 92.28 95.54 37.93 23.53 

Fluorene 3 77.00 91.71 23.08 43.75 
Phenantherene 3 80.00 88.00 37.50 13.33 

Anthracene 3 88.00 55.00 36.36 16.67 
Pyrene 4 77.14 30.00 97.92 18.75 

Benzo(a)anthracene 4 73.33 83.33 75.00 18.75 
Chrysene 4 65.00 33.33 95.45 20.00 

nd: Not detected 
 
A number of bacterial species such as Pseudomonas sp., 

Alcaligenes sp., Staphylococcus sp. and Arthrobacter sp. 
have been reported to completely degrade or co-metabolize 
higher molecular weight PAHs, such as fluoranthene, pyrene, 
fluorene and benz[a]anthracene albeit at slower rate (Monna 
et al., 1993). The degradation rate observed in this study was 
earlier reported in some phytoremediation exercises. In our 
previous study using Cajanus cajan and Lablab purpureus, 
naphthalene was completely degraded in both cases, whereas 
pyrene, fluorene and fluoranthene were either completely 
degraded or significantly reduced (Riskuwa-Shehu & Ismail, 
2018). Degradation of PAHs in plant rhizosphere does not 
necessarily follow a regular pattern when it is exposed to 
different concentration of contaminants as observed in this 
study. Our findings are supported by the work of Moradi et 
al. (2021) who observed different rate of acenaphthene 
(74.63 ± 0.78 in control), fluoranthene (71.18 ± 0.56 in 
2.5%), and anthracene (69.45 ± 6.33, 55.66 ± 4.38 and 
35.97 ± 0.22 in 5.0, 7.5 and 10% contamination respectively) 
degradation in the rhizosphere of Avicennia marina.   

The success of PAHs removal observed in this study could 
be attributed to plant-microbe synergism. Recent studies have 
shown that rhizospheric microorganisms significantly relay 
on root exudates, since most of the exudates are readily 
available sources of nutrients. As a result, microbial species 
become chemotactically attracted, which results to increased 
biomass and contaminants degradation (Hoang et al., 2021; 
Mishra et al., 2021). The microbes in return, support plant 
growth by minimizing contaminants’ toxicity, promoting root 
elongation, enhance uptake and stabilization due to secretion 
of chelators; and degradation (Vangronsveld et al., 2019; 
Ismail et al., 2021). Although the interaction is plant specific, 
the rate of PAHs degradation was reported to increase in 
rhizosphere of different plant species compared to bulk soil 
as observed by Li et al. (2021) using Echinacea purpurea and 
Festuca sp. The work of Gabriele et al. (2021) have shown 
that removal of pyrene from soil was better achieved by plant-
bacteria synergism than plant-fungi interaction or 
phytoextraction. In addition to bacterial degradation, there are 
speculations that extracellular enzymes secreted by plant in 
the rhizosphere could play an important role for the 
degradation of PAHs like pyrene (Agarwal et al., 2020). 
Furthermore, the weathered soil might have over time 

allowed the evolution of competent bacterial species capable 
of high rate of PAHs degradation and their activity was 
significantly promoted upon planting of P. purpureum. In a 
study involving pyrene degradation using Potamogeton 
crispus, plant growth resulted in more enhanced 
bioavailability (+73.9%) and biodegradation activity 
(+277%) of pyrene in aged sediments as compared to freshly 
contaminated sediments where only 13.1% bioavailability 
and 150% biodegradation rate was observed during 36 days 
period (Meng & Chi, 2017).  

 

IV. CONCLUSION 

Removal of PAHs from weathered hydrocarbon-
contaminated soil was monitored for 9 weeks using P. 
purpureum. Enrichment in rhizosphere bacterial population 
was generally observed and diverse bacterial species were 
isolated and identified with predominance of Bacillus spp. 
High rate of PAHs degradation was observed in soil with low 
contamination rate as opposed to high contamination where 
lowest degradation rate was observed. Naphthalene, fluorene, 
phenentherene and anthracene were degraded by > 50% in 
soil contaminated with ≤ 25% contaminants whereas pyrene, 
benzo (a) antheracene and chrysene where degraded more in 
soil with 35% contamination. Despite the desirable qualities 
of P. purpureum for phytoremediation, less attention have so 
far been given to its application in hydrocarbon cleanup 
especially PAHs. The present work would therefore provide 
an insight into its use for large scale PAHs phytoremediation. 
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