Species Richness, Morphological Features and Inventory of Wild Macrofungi found in Akwa Ibom State, Nigeria

Okon Godwin Okon, Joseph Etim Okon, Ukponobong Efiong Antia, Sunday Michael Sam, Lovina Iyandu Udoh, Elizabeth Nsidom Usen, and Inimfon Akaninyene Ibanga

ABSTRACT

The macrofungi diversity in Akwa Ibom State, Nigeria has been inadequately sampled and never documented; this situation makes the status of macrofungi in the State unclear. It is from this reason that this study was necessitated. A total of 60 species of wild macrofungi belonging to 25 families we documented during the period of this study (April to July 2021). Agaricaceae family recorded the highest number of species (12), followed by Polyporaceae (10), Psathyrellaceae (5), Marasmiaceae (4), Amanitaceae (3), Gomphaceae, Lycophyllaceae, Physalacriaceae, Hymenochaetaceae, Gamodermataceae and Strophariaceae recorded 2 species each. Pluteaceae, Stereaceae, Bondarzewiaceae, Schizophyllaceae, Entolomaceae. Cortinariaceae. Pleurotaceae, Dacrymycetaceae, Tricholomataceae, Hygrophoraceae, Hydnangiaceae, Auriculariaceae. Tubiferaceae and Lycoperdaceae recorded 1 species respectively. Out of the 60 macrofungi recorded, 36 species (60.00%) were non-edible, 13 species (21.67 %) were edible, 2 (3.33%) were choice edible and 2 (3.33%) edible but not recommended respectively. 1 species (1.67%) each were poisonous, psychoactive, edible while young, not recommended, non-poisonous but leathery, edible but shows allergic reactions in some individuals and unknown edibility status. Analysis on the growth substrate of the macrofungi species found revealed that; 32 species (53.33%) grew on dead wood, 25 species (41.67%) on soil, 2 species (3.33%) on living tree trunk and 1 species (1.67%) on decaying organic matter. The list and inventory provided by this study will give baseline information that will be needed in the assessment of changes that may occur in wild macrofungi diversity in Akwa Ibom State, Nigeria. The rich diversity of wild occurring macrofungi in Akwa Ibom State offers huge economic life for the local inhabitants in terms of nutriton, health and medicine as well as ecosystem stability at large. Inclusion of macrofungi biodiversity conservation in Akwa Ibom State and Nigerian forest management policies will be an appropriate step towards conservation of these wild macrofungi.

Keywords: Agaricaceae, macrofungi. Marasmiaceae. mushroom. Polyporaceae, Psathyrellaceae.

Published Online: August 31, 2022

ISSN: 2684-5199

DOI: 10.24018/ejbio.2022.3.4.390

O. G. Okon *

Department of Botany, Akwa Ibom State University, Nigeria.

(e-mail: okonokon@aksu.edu.ng)

J. E. Okon

Department of Botany, Akwa Ibom State University, Nigeria.

U. E. Antia

Department of Microbiology, Akwa Ibom State University, Nigeria.

Department of Botany, Akwa Ibom State University, Nigeria.

L. I. Udoh

Department of Botany, Akwa Ibom State University, Nigeria.

E. N. Usen

Department of Botany, Akwa Ibom State University, Nigeria.

I. A. Ibanga

Department of Microbiology, Akwa Ibom State University, Nigeria.

*Corresponding Author

I. INTRODUCTION

Fungi are regarded amongst the most diverse group of organisms on earth, they do not possess chlorophyll and meets their nutrients requirements by absorption. Reproduction is via spores (Taylor et al., 1998) and they include Basidiomycota and Ascomycota. Macrofungi which are sometimes referred to as mushrooms possess a very distinguishing fruiting bodies which are usually produced above ground (soil) (Chang & Miles, 1992), dead woods, occasionally found on living trees as well as other food sources. Macrofungi are typically large enough to be handpicked and seen with the naked eyes (Chang & Miles,

The presence of fungal species is of utmost importance to the ecosystem; fungal communities play vitals roles (Song et al., 2019) as decomposers by degrading ecosystem organic which is essential for nutrient cycling (Chen et al., 2019).

Fungal species such as the mycorrhizal fungi form symbiotic associations with about 80% of higher plants aiding in the acquisition of nutrients and water (Tedersoo et al., 2021). Egli (2011) reported the use of fungal species as bioindicators for the assessment of forests health and quality. Aside ecological and ecosystem functions, fungal species have been of immense benefits to mankind, they are sold and purchased in the markets globally (Oria-de-Rueda et al., 2010) providing great economic benefit to the rural communities as well as culinary benefits (Pettenella et al., 2007).

Macrofungi are widely distributed globally and are considered to be one of the earliest forms of fungi known to man (Okhuoya et al., 2010). Providing information with regards to macrofungal diversity contributes essentially to global diversity, community diversity in particular which is essential in fungal diversity (Okhuoya et al., 2010). It has been reported that only about 6.7% out of the 1.5 million fungal species assessed globally have been described mostly in the tropic, whereas the tropical regions with the seemingly highest rate of fungal diversity have not been fully evaluated (Hawksworth, 2001).

Akwa Ibom State, Nigeria has a rich fungal diversity which has remained poorly exploited. With the rapid development going on in the State, certain developmental accompanying activities like deforestation, crude oil exploration and exploitation, environmental pollution and stresses all leads to environmental degradation which is a key factor in the loss of biodiversity globally which in most cases are usually irreversible. According to literature search, the macrofungi diversity in Akwa Ibom State, Nigeria has been inadequately sampled and never documented; this situation makes the status of macrofungi in the Akwa Ibom State, Nigeria unclear. It is from the reason stated above that this study was necessitated. It is therefore pertinent to create an inventory on the existing wild macrofungi as well as document their morphological characteristic. This research is the first attempt to provide baseline information about macrofungi assemblage and diversity in Akwa Ibom State, Nigeria.

II. MATERIALS & METHODS

A. Study Area

This study was carried out in Mkpat Enin, Etinan, Onna and Ikot Ekpene Local Government Areas of Akwa Ibom State, Nigeria. Akwa Ibom State is located in the Southern region of Nigeria, lying between latitudes 4°32'N and 5°33'N, and longitudes 7°25'E and 8°25'E. Etinan Local Government Area (Latitude 4.51 ° N and Longitude 7.50 ° E), Akwa Ibom State, Nigeria, with an annual rainfall of about 4000 mm and mean temperature variation of 26 – 36 ° C. Mkpat Enin Local Government area is situated within geographical coordinates of Latitude 4°44'5"N, Longitude 7°44'56"E. Onna lies between the coordinates 4°39'0'N and of 7°52'0'E. Ikot Ekpene lies between the coordinates 5°11'N and of 7°43'E.

For Mkpat Enin; Ekim Town, Ikot Akpaden, Ikot Enin, Ikot Aba, Ikot Obiondoho, Ndon Obodom, Ikot Isehe and Ikot Ukwa were sampled. For Onna; Mkpok, Ndon Eyo, Nkan, Ikot Ebiere and Okom were samped. For Etinan; Mbioto 1, Ikot Ekan, Afaha Effiat, and Ikot Nseyen were sampled. For Ikot Ekpene; Utu Ikpe, Utu Edem Usung and Abiakpo Edem Idim were sampled.

B. Identification of Macrofungi

Accessibility of the study area was a major criterion in the selection of the sampling sites. Repeated sampling was carried out following the laid down field protocol outlined by (Krishnappa et al., 2014). The survey and inventory studies took place from April to July 2021 using transects of 50×20 m in triplicate plots. İn-situ photographs of the wild macrofungi species were taken as well as the morphological features measurement. Identification of the macrofungi species was done by a mycologist using taxonomic keys and descriptions described by (Douanla-Meli, 2007).

III. RESULTS

A total of 60 species of wild macrofungi belonging to 25 families we documented during the period of this study. Agaricaceae family recorded the highest number of species

(12), followed by Polyporaceae (10), Psathyrellaceae (5), Marasmiaceae (4), Amanitaceae (3), Gomphaceae. Lycophyllaceae, Physalacriaceae, Hymenochaetaceae, Gamodermataceae and Strophariaceae recorded 2 species Stereaceae, Bondarzewiaceae, each. Pluteaceae, Entolomaceae, Schizophyllaceae, Cortinariaceae, Pleurotaceae, Dacrymycetaceae, Auriculariaceae, Tricholomataceae, Hygrophoraceae, Hydnangiaceae, Tubiferaceae and Lycoperdaceae recorded 1 species respectively as shown in Table I and Fig. 1.

Results obtained from the edibility assessment of the wild macrofungi found in Akwa Ibom State, Nigeria revealed that out of the 60 macrofungi recorded, 36 species (60.00%) were non-edible, 13 species (21.67 %) were edible, 2 (3.33%) were choice edible and edible but not recommended respectively. 1 species (1.67%) each were poisonous, psychoactive, edible while young, not recommended, non-poisonous but leathery, edible but shows allergic reactions in some individuals and unknown edibility status as shown in Fig. 2.

Table II shows the morphological features of wild macrofungi found in Akwa Ibom State, Nigeria; these include cap colour, cap shape, stipe colour, stipe length, volva, gills, and annulus as well as growth substrate and location found.

Analysis on the growth substrate of the macrofungi species found revealed that; 32 species (53.33%) grew on dead wood, 25 species (41.67%) on soil, 2 species (3.33%) on living tree trunk and 1 species (1.67%) on decaying organic matter (Fig.

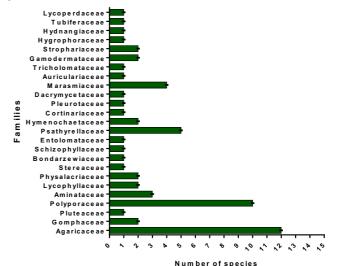
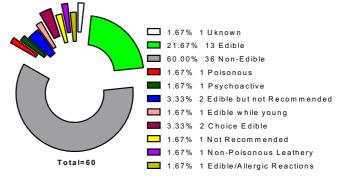


Fig. 1. Species richness of macrofungi families found in Akwa Ibom State, Nigeria.



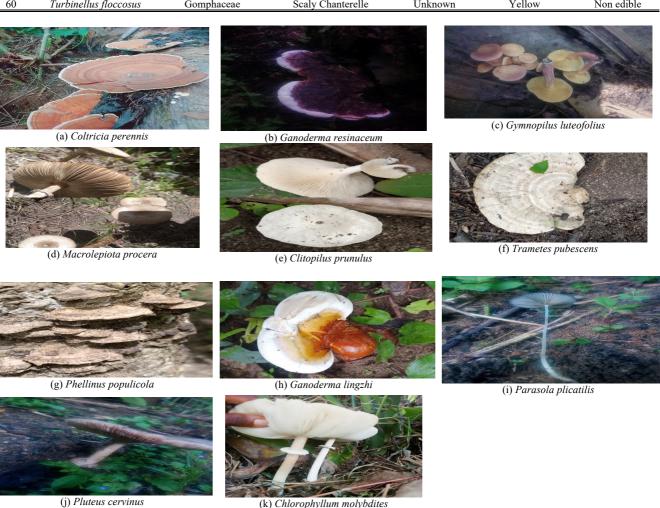

Fig. 2. Edibility status of wild macrofungi found in Akwa Ibom State, Nigeria.

TABLE I: CHECKLIST OF WILD MACROFUNGI FOUND IN AKWA IBOM STATE, NIGERIA

			ILD MACROFUNGI FOUND IN AR			
S/N	Scientific Name	Family	Comon Name	Local Name	Colour/ Appearance	Edibility Status
1 2	Agaricus pocilator Agaricus semotus	Agaricaceae Agaricaceae	Agrocybe Button mushroom	Tinaba Udip isong	Milky Brown	Edible Edible
3	Agaricus semotus Agaricus arvensis	Agaricaceae	Horse Muchroom	Unknown	White	Edible
4	Amanita caesarae	Aminataceae	Caesar mushroom	-	Milky/brown	Non-edible
5	Amanita pantherina	Aminataceae	Panther muchroom	Unknown	Brown	Non edible
6	Aminata vaginata	Aminataceae	The grissette	Udip iton	Gray to grayish- brown	Edible but not recommended
7	Armillaria ostoyae	Physalacriaceae	Honey fungi	Unknown	Brown	Non edible Choice edible
8	Armillaria mellea	Physalacriaceae	Honey mushroom or stump mushroom	Unknown	honey coloured, yellowish	but can cause allergic reaction
9 10	Bondarzewia berkeleyi Calvatia gigantea	Bondarzewiaceae Agaricaceae	Berkeley's polypore Giant puffball	Unknown Unknown	Pale-grey Brown	Edible Edible
11	Calvatia cyathiformis	Agaricaceae	Purple-spored puffball, puffball cap.	Nsenunen isong	Purple or brownish	Edible while young
12	Chlorophyllum molybdites	Agaricaceae	False parasol	Udip eto	Milky	Poisonous
13 14	Clitopilus prunulus Coltricia perennis	Entolomataceae Hymenochaetaceae	Dead Dough Clitopilus Tiger's eye	Nkokobingo Unknown	Grey-white Grey	Edible Non edible
15	Coprinopsis lagopus	Psathyrellaceae	Hare's foot inkcap	Udip Ekpeyop	Pale to very dark brown, slivery grey veil	Unknown
16	Coprinus lagopus	Psathyrellaceae	Harefoot mushroom	Akpoktoi	Ash	Non-edible
17	Coprinus plicatilis	Psathyrellaceae	Umbrella Mushroom	Akpoktoi	Ash	Non-edible
18 19	Cortinarius malicorius Dacryopinax spathularia	Cortinariaceae Dacrymycetaceae	Yellow malicorius Sweet osmanthus	Unknown Udip ekpo	Bright-yellow Yellow	Non edible Non-edible
20	Exidia recisa	Auriculariaceae	Willow brain or amber jelly roll	Utong ekpu	Honey Brown	Edible
21	Ganoderma lingzhi	Gamodermataceae	Reishi muchroom	Unknown	White	Non edible
22	Ganoderma resinaceum	Ganodermataceae	Bracket fungus	Awod-oyop	Brown with whitish edge kining	Non edible, medicinal
23	Gerronema strombodes	Marasmiaceae	Golden gilled gerronema	Unknown	Milky	Non edible
24	Gymnopilus luteofolius	Strophariaceae	Yellow-gilled gymnopilus	Udip Ekpo	Reddish, purple to yellow caps	Psychoactive
25	Hygrocybe squamulosa	Hygrophoraceae	Waxy cap	Unknown	Brightly coloured in shades of red, orange or yellow	Edible but not recommended
26	Laccaria laccata	Hydnangiaceae	Laccaria Muchroom	Unknown	Reddish-brown	Edible Non edible
27	Laetiporus sulphureus	Polyporaceae	Chicken mushroom	Nsasam	Brown	Non edible
28	Leiotrametes lactinea	Polyporaceae	Poroid white rot fungi	Unknown	Whitish, milky	Non edible
29	Leucoagaricus rubrotinctus	Agaricaceae	Red-eyed parasol, red- tinged parasol.	Aduok	Reddish brown to pinkish brown	Non edible
30 31	Lenzites betulina Lentinus triginus	Polyporaceae Polyporaceae	Gilled polypore Tiger sawgill	Udip isong Tinapaa	White Whitish	Non edible Edible
32	Lycogala epidendrum	Tubiferaceae	Wolf's milk slime or toothpaste slime	Nkuaunen isong	Pinkish grey to yellowish brown or greenish black	Non edible
33	Lycoperdon nigrescens	Lycoperdaceae	Dusky puffball	Nkwa Unen isong	Brown	Non edible
34	Lycoperdon utriforme	Agaricaceae	Hankea	Ibodo udip	Brown	Non edible
35	Leratiomyces percevalii	Strophariaceae	Redlead round head	Unknown	Honey yellow/whitish	Non edible
36	Macrolepiota xanthopus	Agaricaceae	Parasol	Udip adine	Milky	Non edible
37	Macrolepiota albuminosa	Agaricaceae	Parasol	Asaka isong	Brown	Non edible
38 39	Macrolepiota rhacodes	Agaricaceae	Shaggy Parasol muchroom	Udip adine Udip ison	Ash	Edible Choice Edible
39 40	Macrolepiota procera Marasmiellus candedus	Agaricaceae Marasmiaceae	Parasoi muchroom Marasmus	Odip ison Atontong	Brown White	Non edible
41	Marasmius rotula	Marasmiaceae	Pinwhell mushroom	Ntan unoh	Whitish	Non edible
42	Mycena pura	Tricholomataceae	Poison radish ground mycena	Nyeye	Purple	Non edible
43	Ossicaulis lignatilis	Lycophyllaceae	Mealy oyster	Unknown	Whitish	Non edible
44 45	Parasola plicatilis Phellinus populicola	Psathyrellaceae Hymenochaetaceae	Cap inc Hardwood trunk	Unknown Udip etop	White Brown	Non edible Non edible
		•	muchroom			Non edible Not
46	Pleurocybella porrigens	Marasmiaceae	Angel Wing	Udip	White	Recommended
47	Pleutous ostreatus	Pleurotaceae	Oyster muchroom Deer shield, the deer or	Akpaab	White Light ochre-brown	Choice Edible
48	Pleuteus cervinus	Pluteaceae	fawn mushroom	Udip ediene	to dark brown	Edible
49 50	Polyporus varius Psathyrella candolleana	Polyporaceae Psathyrellaceae	Bat Fringed crumble cap, pale	Ndana Unknown	Brown Honey brown when young but fades to	Non edible Edible
	•	•	brittle stem.		nearly white	
51	Ramaria stricta	Gomphaceae	Coral fungi	Nwen udip	Ash	Non edible

TARIE I. CHECKLIST	OF WILD MACROFUNG	ELECTIND IN A KWA	IDOM STATE	NICEDIA (CONT.)
TABLE E CHECKLIST	OF WILD MACKOFUNG	TI FOUND IN AKWA	IBOM STATE.	NICERIA (CO/VI.)

S/N	Scientific Name	Famıly	Comon Name	Local Name	Colour/ Appearance	Edibility Status
52	Schizophyllum commune	Schizophyllaceae	Split gill	Unknown	Creamy yellow to pale white in colour	Non-poisonous, Leathery
53	Stereum hirsutum	Stereaceae	Shelf fungus	Udip	Brown	Non edible
54	Termitomyces striatus	Lyophyllaceae		Udip	Brown	Edible
55	Trametes pubescens	Polyporaceae	White rot fungus	-	cream-coloured	Non edible
56	Trametes gibbosa	Polyporaceae	Lumpy bracket fungi	Udip etop	Yellow	Non edible
57	Trametes versicolor	Polyporaceae	Turkey tail	Udip etop	Brown	Non edible
58	Trametes suaveolens	Polyporaceae	Bracket fungi	Udip etop	Cream-coloured	Non edible
59	Trametes trogi	Polyporaceae	Bracket fungi	Udip etop	Yellow	Non edible
60	Turbinellus floccosus	Gomphaceae	Scaly Chanterelle	Unknown	Yellow	Non edible

(k) Chlorophyllum molybdites Fig. 3. Some species of wild macrofungi found in Akwa Ibom State, Nigeria.

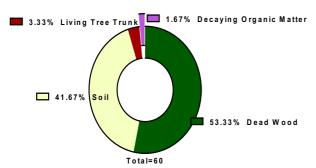


Fig. 4. Different growth substrates of wild macrofungi found in Akwa Iboom State, Nigeria.

IV. DISCUSSION

Results obtained in this research is in line with the work of Alem et al. (2021) who also recorded abundance of species from the family Agaricaceae, Psathyrellaceae, Polyporaceae, Lycophyllaceae. The Agaricaceae family from this study presented the most abundant species. The family Agaricaceae are conspicuous macrofungi, thus, it would not be surprising to find a higher occurrence during sampling. Similar findings were reported by Nwordu et al. (2013), they recorded abundance of species from the families Auriculaceae, Formitopsidaceae, Polyporaceae, Russulaceae, Agaricaceae, Tricholomataceae, Corpinaceae. Lyophyllaceae, Pleurotaceae and Russulaceae in their research investigation to catalogue and identify some wild edible macro-fungi in Nigeria. Keta et al. (2019) on his survey of Zuru Local Government area of Kebbi State, Nigeria collected twelve wild mushroom species which include Agaricus semotus, Panus fulvus, Fomes lignosus, Amanita caesarea, Chlorophyllum molybdite, Lactarius deliciosus, Pleurotus ostreatus, Ganoderma lucidum, Tramates elegans, Lenzites betulina, Lepiota procera, and Trametes versicolor were documented for the first time in study area (Zuru) most of which were also recorded in this study. This supports previous findings, that diversity of Nigeria mycoflora is underestimated (Musieba et al. 2011).

TABLE II: MORPHOLOGICAL FEATURES OF WILD MACROFUNGLEOUND IN AKWA IROM STATE. NIGERIA

S/N	Scientific Name	Substrate	Cap Colour	Cap Shape	Stipe Colour	Stipe Length (cm)	Stipe Shape	Volva	Gills	Annulus	Location found
1	Agaricus pocilator	Dead wood	Milky	Round	White	2.40 ± 0.74	Short	Absent	Closely space	Absent	Ikot obion-doho
2	Agaricus semotus	Soil	Brown	Conical	White	9.00 ± 0.66	Long	Absent	Absent	Absent	Ikot obion-doho
		Decaying									
3	Agaricus arvensis	Organic	White	cornical	Brown	4.50 ± 0.31	Short	Present	Crowded	Absent	Mkpok
		matter									
4	Amanita caesarae	Dead wood	Brown	Round	Absent	-	Absent	Absent	Absent	Absent	Ikot obion-doho
5	Amanita pantherina	Soil	Brown	cornical	Brown	17.60 ± 2.71	Long	Absent	Widely	Present	Ndon Eyo
6	Aminata vaginata	Soil	Brown	Conical	Brown	7.90 ± 0.24	Long	Present	Spaced Closely packed	Absent	Utu Ikpe
7	Aminata vaginata Armillaria ostoyae	Dead wood	Brown	cornical	Absent	7.90 ± 0.24	Absent	Absent	Crowded	Absent	Nkan
8	Armittaria ostoyae Armillaria mellea	Soil	Brown	Round	Brown	5.70 ± 0.74	Long	Present	Closely packed	Present	Utu Edem Usung
		Living tree		Kidney					, I		· ·
9	Bondarzewia berkeleyi	trunk	Pale-grey	shaped	White	5.50 ± 0.34	Short	Absent	Crowded	Absent	Ndon Eyo, Afaha Effiat
10	Calvatia gigantea	Soil	Brown	Row	Absent	-	Absent	Absent	Rough	Absent	Ndon Eyo
11	Calvatia cyathiformis	Soil	Brown	Round	Milky	3.00 ± 0.12	Short	Absent	Rough	Absent	Utu Ikpe
12	Chlorophyllum molybdites	Soil	Milky	Round	White	15.00 ± 2.21	Long	Present	Closely packed	Present	Utu Ikpe
13	Clitopilus prunulus	Dead wood	Grey-white	cornical	White	6.20 ± 0.72	Long	Absent	Crowded	Absent	Mkpok
14	Coltricia perennis	Dead wood	Brown	Round	Absent	-	Absent	Absent	Closely packed	Absent	Utu Ikpe
15	Coprinopsis lagopus	Dead wood	White	Round	Milky	5.00 ± 0.22	Long	Absent	Widely space	Absent	Ikot Isehe
16	Coprinus lagopus	Soil	Grey	Conical	White	$6.9\ 0\pm0.10$	Long	Absent	Closely packed	Absent	Utu Ikpe
17	Coprinus plicatilis	Soil	Ash	Round	White	6.40 ± 0.30	Long	Absent	Closely space	Absent	Ikot Ekan, Ekim
18	Cortinarius malicorius	Dead wood	Bright-	Kidney	White	2.00 ± 0.20	Short	Absent	Crowded	Absent	Nkan
			yellow	shaped							
19	Dacryopinax spathularia	Dead wood	Absent	-	Yellow	2.40 ± 0.43	Short	Absent	Absent	Absent	Ekim, Ikot Nseyen
20	Exidia recisa	Dead wood	Brown	Round	Brown	0.30 ± 0.18	Short	Absent	-	Absent	Utu Ikpe
21	Ganoderma lingzhi	Dead wood	White	Kidney	White	2.50 ± 0.37	Short	Absent	Crowded	Absent	Okom
	<u>-</u>			shaped							
22	Ganoderma resinaceum	Dead wood	Milky/	Kidney	Absent	-	Absent	Absent	-	Absent	Abiakpo Edem Idim
22	C	D 1 1	brown	shaped	3371	4.70 + 0.44	T	41 4	C1 1	41 4	-
23	Gerronema strombodes	Dead wood	Milky	Round	White	4.70 ± 0.44	Long	Absent	Closely space	Absent	Ekim
24 25	Gymnopilus luteofolius	Dead wood	Red/yellow	Round Round	Red	2.30 ± 0.11	Short	Present	Closely packed	Absent	Utu Ikpe
23	Hygrocybe squamulosa	Soil	Red Reddish-	Round	Orange	3.40 ± 0.28	Short	Absent	Closely packed	Absent	Utu Edem Usung
26	Laccaria laccata	Dead wood	brown	cornical	Brown	5.30 ± 0.35	Short	Absent	Crowded	Absent	Mkpok
27	Laetiporus sulphureus	Dead wood	Brown	Round	Absent	_	_	Absent	Absent	Absent	Ikot Aba
	• •		Milky/		Hosent						
28	Leiotrametes lactinea	Dead wood	brown	Round	-	-	-	Absent	Pore like	Absent	Utu Ikpe
20		a "	Brown/milk	. .	D / '''	400 : 040	at .		at 1 1 1		**. **
29	Leucoagaricus rubrotinctus	Soil	y	Round	Brown/milky	4.00 ± 0.18	Short	Absent	Closely packed	Present	Utu Ikpe
30	Lenzites betulina	Soil	White	Round	Brown	5.00 ± 0.98	Long	Absent	Widely space	Absent	Ikot Aba, Mbioto 1
31	Lentinus triginus	Dead wood	Milky	Round	Milky	1.00 ± 0.03	Short	Present	Closely packed	Absent	Abiakpo Edem Idim
32	Lycogala epidendrum	Dead wood	Brown	Round	-	-	-	-	-	Absent	Abiakpo Edem Idim
33	Lycoperdon nigrescens	Soil	Brown	Round	Absent	-	Absent	Absent	Rough	Absent	Ndon Eyo
34	Lycoperdon utriforme	Soil	Brown	Conical	Milky	4.50 ± 0.41	Short	Absent	Absent	Absent	Ikot Aba
35	Leratiomyces percevalii	Soil	Milky	Round	Milky	2.50 ± 0.17	Short	Present	Closely packed	Absent	Utu Ikpe
36	Macrolepiota xanthopus	Soil	Brown	Conical	Brown	4.20 ± 0.19	Short	Absent	Absent	Absent	Ndon Obodom
37	Macrolepiota albuminosa	Soil	Brown	Round	Absent	-	-	Absent	Absent	Absent	Ndon Obodom
38	Macrolepiota rhacodes	Soil	Milky	Round	Milky	13.20 ± 2.13	Long	Present	Widely space	Present	Ndon Obodom
39	Macrolepiota procera	Soil	Milky/	Conical	Milky	7.60 ± 1.17	Long	Present	Rough	Absent	Utu Edem Usung, Mbioto
	* *		brown		•	, = 1.17	•		_		1
40	Marasmiellus candedus	Dead wood	Milky	Round	Absent	-	-	Absent	Widely space	Absent	Ikot Oyoro

TARLE II. MORPHOLOGICAL FEATURES OF WILD MACROFUNGLEOUND IN AKWA IROM STATE NIGERIA (CONT.)

S/N	Scientific Name	Substrate	Cap Colour	Cap Shape	Stipe Colour	Stipe Length (cm)	Stipe Shape	Volva	Gills	Annulus	Location found
41	Marasmius rotula	Soil	Milky	Round	Brown	7.90 ± 0.48	Long	Absent	Widely spaced	Absent	Utu Edem Usung
42	Mycena pura	Soil	Purple	cornical	White	14.30 ± 3.15	Long	Absent	Widely Spaced	Absent	Ndon Eyo
43	Ossicaulis lignatilis	Dead wood	White	Round	Milky	0.50 ± 0.15	Short	Absent	Closely packed	Absent	Utu Edem Usung
44	Parasola plicatilis	Soil	Milky/brow n	Round	White	9.30 ± 1.48	Long	Absent	Closely packed	Absent	Utu Ikpe
45	Phellinus populicola	Living tree trunk	Brown	Kidney Shaped	Absent	-	Absent	Absent	Crowded	Absent	Nkan
46	Pleurocybella porrigens	Dead wood	Milky	Round	Milky	0.20 ± 0.01	Short	Absent	Closely packed	Absent	Utu Ikpe
47	Pleurotus ostreatus	Dead wood	Brown	Round	Brown	4.20 ± 0.14	Short	Absent	Closely packed	Absent	Utu Ikpe
48	Pleuteus cervinus	Soil	Grey/ brown	Round	Milky	6.30 ± 0.41	Long	Present	Closely packed	Absent	Abiakpo Edem Idim
49	Polyporus varius	Dead wood	Brown	Round	Absent	-	Absent	Absent	Closely packed	Absent	Ikot Oyoro
50	Psathyrella candolleana	Soil	Milky	Conical	Milky	4.60 ± 0.22	Long	Present	Weblike	Absent	Utu Edem Usung
51	Ramaria stricta	Dead wood	Ash	Conical	Ash	2.30 ± 0.14	Short	Absent	Absent	Absent	Ukam, Afaha Effiat
52	Schizophyllum commune	Dead wood	Grey	-	Grey	0.30 ± 0.04	Short	Absent	Closely packed	Absent	Utu Edem Usung
53	Stereum hirsutum	Dead wood	Milky/ yellow	-	-	-	-	Absent	-	Absent	Utu Ikpe
54	Termitomyces striatus	Soil	Grey	Round	Milky	4.30 ± 0.94	Long	Absent	Closely packed	Absent	Mbioto 1, Ikot Ekan
55	Trametes pubescens	Dead wood	cream- coloured	Kidney shaped	Absent	-	Absent	Absent	Crowded	Absent	Nkan
56	Trametes gibbosa	Dead wood	Yellow	Kidney shaped	Absent	-	Absent	Absent	Crowded	Absent	Ikot Ebiere
57	Trametes versicolor	Dead wood	Brown	Round	Absent	-	-	Absent	Closely spaced	Absent	Ikot Enin
58	Trametes suaveolens	Dead wood	Cream- coloured	Kidney shaped	Absent	-	Absent	Absent	Crowded	Absent	Ikot Ebiere
59	Trametes trogi	Dead wood	Yellow	Kidney shaped	Absent	-	Absent	Absent	Crowded	Absent	Ikot Ebiere
60	Turbinellus floccosus	Dead wood	Yellow	Row	Brown	7.50 ± 0.17	Long	Absent	Rough	Absent	Mkpok

From this study growth substrate of the macrofungi species found revealed that; 32 species (53.33%) grew on dead wood, 25 species (41.67%) on soil, 2 species (3.33%) on living tree trunk and 1 species (1.67%). This is in line with the work of Keta et al. (2019) who also reported that mushroom growth environment observed during fruiting bodies collection, 42.4% of the samples were collected from soil and dead wood (27.8%). This agrees with the previous reports by Ayodele et al. (2011) and Tibuhwa (2011) which stated that, dead wood and soil debris are most common and favourable mushroom substrates for the growth of mushroom species as a result of higher nutrient content that are easily degradable and reabsorb by these mushroom mycelia growing on it.

V. CONCLUSION

The list and inventory provided by this study will give baseline information that will be needed in the assessment of changes that may occur in wild macrofungi diversity in Akwa Ibom State, Nigeria. The rich diversity of wild occurring macrofungi in Akwa Ibom State offers huge economic life for the local inhabitants in terms of nutrition, health and medicine and ecosystem stability at large. However, the usefulness of these macrofungi has resulted in its overexploitation which needs to be curbed. Thus, conservation of these macrofungi can be done through cultivation, creation and protection of the mushroom habitats and forest reserves where these mushrooms are found. Also, inclusion of macrofungi biodiversity conservation in Akwa Ibom State and Nigerian forest management policies will be appropriate.

ACKNOWLEDGMENT

I wish to thank Ukpong Bella, Umoren Peter and Umoren Patrick for their aid and contributions towards the success of this work.

CONFLICT OF INTEREST

Authors declare that they do not have any conflict of interest.

REFERENCES

- Alem, D., Dejene, T., Oria-de-Rueda, J. A. & Martín-Pinto, P. (2021). Survey of macrofungal diversity and analysis of edaphic factors influencing the fungal community of church forests in Dry Afromontane areas of Northern Ethiopia. Forest Ecology and Management, 496, 119391.
- Ayodele, S. M., Akpaja, E. O. & Adamu, Y. (2011). Some Edible Medicinal Mushrooms of Igala Land in Nigeria, Their Sociocultural and Ethnomycological Uses. International Journal of Sciences Nature, 2(3), 473-476.
- Chang, S. T. & Miles, P. G. (1992). Mushroom biology-A new decipline. Mycologist. 6:64-65.
- Chen, J., Xu, H., He, D., Li, Y., Luo, T., Yang, H. & Lin, M. (2019). Historical logging alters soil fungal community composition and network in a tropical rainforest. For. Ecol. Manage. 433, 228-239.
- Douanla-Meli, C. (2007). "Fungi of Cameroon, Ecological Diversity; Taxonomy of Non-gilled Hymenomycetes, Mbalmayo Forest Reserve, Bibliotheca Mycologica," p. 410.
- Egli, S. (2011). Mycorrhizal mushroom diversity and productivity An indicator of forest health? Ann. For. Sci. 68, 81-88

- Hawksworth, D. L. (2001). The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research, 105(12), 1422-1432.
- Keta, J. N., Suberu, H. A., Shehu, K., Mubarak, A., Mohamed, N. K. & Mustapha, A. (2019). Diversity of Wild Macro Fungi in Kebbi State: A Baseline Report. Equity Journal of Science and Technology, 6(1), 78-
- Krishnappa, M. Swapna, S. and Syed, A. (2014). Diversity of macrofungi communities in chikmagalur district of Western Ghats, India, in Proceeding of the 8th International Conference on Mushroom Biology and Mushroom Products (ICM BMP8), pp.71-82.
- Musieba, F., Okoth, S. & Mibey, R. K. (2011). First Record of Occurrence of Pleurotus citrinopileatus Singer on new hosts in Kenya. Agric Biol J North Am, 2(9), 1304-1309.
- Nwordu, M. E., Isu, R. N. & Ogbadu, G. H. (2013). Catalogue and identification of some wild edible macro-fungi in Nigeria. Online International Journal of Food Science, 2, 1–15.
- Okhuoya, J., Akpaja, E., Osemwegie, O., Oghenekaro, A. and Ihayere, C. (2010). Nigerian mushrooms: underutilized non-wood forest resources. Journal of Applied Sciences and Environmental Management, 14(1), 43-54.
- Oria-de-Rueda, J.A., Hern'andez-Rodríguez, M., Martín-Pinto, P., Pando, V. & Olaizola, J. (2010). Could artificial reforestations provide as much production and diversity of fungal species as natural forest stands in marginal Mediterranean areas? For. Ecol. Manage. 260, 171-180.
- Pettenella, D., Secco, L. & Maso, D. (2007). NWFP&S marketing: lessons learned and new development paths from case studies in some European Countries. Small-Scale For. 6, 373-390.
- Song, J., Chen, L., Chen, F. & Ye, J. (2019). Edaphic and host plant factors are linked to the composition of arbuscular mycorrhizal fungal communities in the root zone of endangered Ulmus chenmoui Cheng in China. Ecol. Evol. 9:8900-8910.
- Taylor, D. J., Green, N. P. O., Stout, G. W. & Soper, R. (1998). Text Book of Biological Science, University press, Cambridge, UK, Pages 1-984.
- Tedersoo, L., Bahram, M. & Zobel, M. (2020). How mycorrhizal associations drive plant population and community biology. Science, 80, 367.
- Tibuhwa, D. D. (2011). Substrate specificity and phenology of macrofungi community at the University of Dar es Salaam main campus, Tanzania. Journal of Applied Bioscience, 46, 3173-3184.