##plugins.themes.bootstrap3.article.main##

This study concerns the finding of an effective operational equation relating the measured absorpbance (or O.D. - optical density) in a spectrophotometer of the suspended cells of microalgae to their cell density (c.d.) in culture in order to construct calibration curves for use in culture operations. The microalgae examined were the chlorophyte Nephroselmis sp., the dinophyte Amphidinium carterae and the filamentous cyanobacterium Phormidium sp. Wavelengths of 430 and 680 nm were selected that correspond to chlorophyll-a peaks of their absorption spectra were used and additionally 750 and 570 nm where absorbance was not peaked. From all equations extracted best fitness with strong predictive values were those of a logarithmic type: O.D.=0,9328*ln(c.d.)-14,108 (R2=0,9943) at 680 nm for Nephroselmis, a power equation: O.D.=0,0000009*(c.d.)0,9195 (R2=0,9936) at 680 nm for Amphidinium and a polynomial second order: O.D.=0,9869(c.d.)2+2,4393(c.d.)+0,2666 (R2=0,9737) at 570 nm for Phormidium.

References

  1. Shen, Y., 2014. Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Adv. 4, 49672–49722.
     Google Scholar
  2. Cuellar-Bermudez, S.P., Garcia-Perez, J.S., Rittmann, B.E., Parra-Saldívar, R., 2015. Photosynthetic bioenergy utilizing CO2: An approach on flue gases utilization for third generation biofuels. J. Clean. Prod. 98.
     Google Scholar
  3. Ravindran, B., Gupta, K.S., Won-Mo Cho, Kim, K.J., Lee, R.S., Jeong, K.-H., Lee, J.D., and Choi, H.-C., 2016. Microalgae Potential and Multiple Roles—Current Progress and Future Prospects—An Overview. 2016Sustainability 8(12):1215 DOI: 10.3390/su8121215.
     Google Scholar
  4. Padovan, A., 1992. Isolation and culture of five species of freshwater algae from the alligator rivers region, northern territory. Technical Memorandum No. 37. Australian Government Publishing Service. Canberra.
     Google Scholar
  5. Valer, R.M., Glock, L., 1998. Quantificação de algas clorofíceas de interesse ecotoxicológico a través do método espectrofotométrico. Acta Limnol. Bras. 11 (2), 149–156.
     Google Scholar
  6. Geis, S.W., Fleming, K.L., Korthals, E.T., Searle, G., Reynolds, L., Karner, D.A., 2000. Modifications to the algal growth inhibition test for use as a regulatory assay. Environ. Toxicol. Chem. 19, 36–41.
     Google Scholar
  7. Mikschofsky, H., Hammer, M., Schmidtke, J., König, P., Keil, G., Schirrmeier, H., Schmidt, K., Broer, I., 2009. Optimization of growth performance of freshly induced carrot suspensions concerning PMP production. In Vitro Cel. Develop. Biol. Plant. 45, 740–749.
     Google Scholar
  8. Ribeiro-Rodrigues, L.H., Arenzon, A., Raya-Rodriguez, M.T., Fontoura, N.F., 2011. Algal density assessed by spectrophotometry: a calibration curve for the unicellular algae Pseudokirchneriella subcapitata. J. Environ. Chem. Ecotoxicol. 3 (8), 225–228.
     Google Scholar
  9. Santos-Ballardo, U. D., Rossi, S., Hernandez, V., Vázques Gómez, R., Rendón-Unceta, C. M., Caro-Corrales, J., Valdez-Ortiz, A., 2015. A simple spectrophotometric method for biomass measurement of important microalgae species in aquaculture. Aquaculture 448, 87-92.
     Google Scholar
  10. Gallardo-Rodriguez, J., Sanchez-Miron, A., Garcia-Camacho, F., Lopez-Rosales, L., Chisti, Y., Molina-Grima, E., 2012. Bioactives from microalgal dinoflagellates. Biotechnol. Adv. 30 (6), 1673–1684.
     Google Scholar
  11. Assunção, J., Guedes, A., Malcata, F.X., 2017. Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates. Mar. Drugs 15 (12), 393.
     Google Scholar
  12. López-Rosales, L., García-Camacho, F., Sánchez-Mirón, A., Beato, E.M., Chisti, Y., Grima, E.M., 2016. Pilot-scale bubble column photobioreactor culture of a marine dinoflagellate microalga illuminated with light emission diodes. Bioresour. Technol. 216, 845–855.
     Google Scholar
  13. Molina-Miras, A., Morales-Amador, A., de Vera, C., López-Rosales, L., Sánchez-Mirón, A., Souto, M., Fernández, J., Norte, M., García-Camacho, F., Molina-Grima, E., 2018. A pilot-scale bioprocess to produce amphidinols from the marine microalga Amphidinium carterae: isolation of a novel analogue. Algal Res. 31, 87–98.
     Google Scholar
  14. Molina-Miras, A., López-Rosales, Sánchez-Miróna, A.L., Cerón-García, C.M., Seoane-Parrac, S., García-Camacho, F., Molina-Grima, E., 2018. Long-term culture of the marine dinoflagellate microalga Amphidinium carterae in an indoor LED-lighted raceway photobioreactor: Production of carotenoids and fatty acids. Bioresource Technology 265, 257-267.
     Google Scholar
  15. García-Camacho, F., Sánchez-Mirón, A., Gallardo-Rodríguez, J., López-Rosales, L., Chisti, Y., Molina-Grima, E., 2014. Culture of microalgal dinoflagellates. In: Botana, L.M. (Ed.), Seafood and Freshwater Toxins: Pharmacology, Physiology, and Detection, third ed. CRC Press, Boca Raton, pp. 551–566.
     Google Scholar
  16. Fuentes-Grunewald, C., Bayliss, C., Fonlut, F., Chapuli, E., 2016. Long-term dinoflagellate culture performance in a commercial photobioreactor: Amphidinium carterae case. Bioresour. Technol. 218, 533–540.
     Google Scholar
  17. Ishikawa, C., Jomori, T., Tanaka, J., Senba, M., Mori, N., 2016. Peridinin, a carotenoid, inhibits proliferation and survival of HTLV-1-infected T-cell lines. Int. J. Oncol. 49 (4), 1713–1721.
     Google Scholar
  18. Ji, M.-K.; Yun, H.-S.; Hwang, B.S.; Kabra, A.N.; Jeon, B.-H.; Choi, J. Mixotrophic cultivation of Nephroselmis sp. using industrial wastewater for enhanced microalgal biomass production. Ecol. Eng. 2016, 95, 527–533.
     Google Scholar
  19. Park, S., Ahn, Y., Pandi, K., Ji, M.K., Yun, H.-S., Choi, J.-Y., 2019. Microalgae Cultivation in Pilot Scale for Biomass Production Using Exhaust Gas from Thermal Power Plants. In: João Fernando Pereira Gomes (ed.) Optimization of Biodiesel, Methanol and Methane Production and Air Quality Improvement. MDPI Energies, 12, 3497, 14-23.
     Google Scholar
  20. Santhose, I., Gnanadoss, J., Ramganesh, S., Elumalai, S., 2011. Enhanced Carotenoid Synthesis of Phormidium sp. in Stressed Conditions. Journal of Experimental Sciences, 2, (3), 38-44.
     Google Scholar
  21. Yalcin, D., Katircioğlu, T.H., Özer, T., Shamchi, P.M., Acikgoz Erkaya, A. İl., 2020. Evaluation of phytotherapeutic activities and phytochemical content of Phormidium autumnale Gomont from natural freshwater sources. Environ. Monit. Assess. 192: 244, 1-11. DOI. 10.1007/s10661-020-8207-4.
     Google Scholar
  22. Do Nascimento, C.T., Nass, P.P., Fernandes, S.A., Vieira, R.K., Wagner, R., Jacob-Lopes, E., Zepka, Q.L., 2020. Exploratory data of the microalgae compounds for food purposes. Data in Brief, 29, 1-9. DOI. 10.1016/j.dib.2020.105182.
     Google Scholar
  23. Havlik, I., Lindner, P., Scheper, T., Reardon, K.F., 2013. On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends Biotechnol. 31 (7), 406–414.
     Google Scholar
  24. Rosas, L., Riveros, H.G., 1990. Iniciación al método científico experimental. 2nd edition. Ed. Trillas, México, D.F.
     Google Scholar
  25. Bricaud, A., Morel, A., Babin, M., Allali, K., Claustre, H., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) eaters: analysis and implications for bio-optical models. J. Geophys. Res. 103 (13), 31033–31044.
     Google Scholar
  26. Ebenezer, V., Ki, J.S., 2013. Quantification of toxic effects of the herbicide metolachlor on marine microalgae Ditylum brightwelli (Bacillariophyceae), Prorocentrum minimum (Dinophyceae), and Tetraselmis suecica (Chlorophyceae). J. Microbiol. 51 (1), 136–139.
     Google Scholar
  27. Gómez, P. M., Romeral, G. J., Martorell, C.J., Aroca, S.A., 2016. Direct spectrophotometric method to determine cell density of Isochrysis galbana in serial batch cultures from a larger scale fed-batch culture in exponential phase. NEREIS 8, 35-43.
     Google Scholar
  28. Dziosa, K., Makowska, M., 2016. Monitoring of Chlorella sp. growth based on the optical density measurement. Maintenance Problems. 2, 197-205.
     Google Scholar
  29. American Public Health Association, 2012. Standard Methods for the Examination of Water and Wastewater 22nd edition.
     Google Scholar