Simultaneous Inhibition of SARS-CoV-2 Infectivity by a Specific Combination of Plant-derived Compounds

##plugins.themes.bootstrap3.article.main##

  •   Anna Goc

  •   Vadim Ivanov

  •   Svetlana Ivanova

  •   Madhurima Chatterjee

  •   Matthias Rath

  •   Aleksandra Niedzwiecki

Abstract

SARS-CoV-2 pandemic remains a challenge to human health and economy worldwide. Previously we have shown that a combination of active plant-derived compounds and plant extracts can dose-dependently inhibit binding of RBD-spike protein SARS-CoV-2 to the ACE2 receptor and its expression on human alveolar epithelial cells. Here we use eGFP-luciferase-SARS-CoV-2 spike protein pseudo-virions and SARS-CoV-2-RdRp, to show if the antiviral effectiveness of this combination of plant-derived compounds and plant extracts expands to other important key mechanisms of SARS-CoV-2 infection. Or results revealed that this combination of five plant-derived compounds inhibited the attachment of the SARS-CoV-2 pseudo-typed particles with lung hACE2/A549 cells. In addition, it down-regulated the activity of key enzymes known to be crucial for the entry of the SARS-CoV-2 virus, such as TMPRSS2, furin and cathepsin L, but not their expression at protein level. This combination did not affect ACE2 binding to and ACE2 enzymatic activity, but modestly decrease cellular expression of neuropilin-1 molecule and significantly inhibited activity of viral RdRp. This study demonstrates inhibitory effects of this combination on key cellular mechanisms of SARS-CoV-2 infection. The findings further support the use of plant-derived compounds as effective health measures against SARS-CoV-2-caused infection.


Keywords: ACE2, cathepsin L, furin, NPR-1, SARS-CoV-2, TMPRSS2

References

I. Chakraborty, P. Maity, “COVID-19 outbreak: Migration, effects on society, global environment and prevention.” Sci. Total Environ, vol. 728, 138882, 2020.

WHO Coronavirus Disease (COVID-19) Dashboard. Available: https://covid19.who.int/ 2020/11/9.

F. Li. “Structure, Function, and Evolution of Coronavirus Spike Proteins.” Annu. Rev. Virol., vol. 3, pp. 237-261, 2016.

N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, et al. “China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China 2019.” N. Engl. J. Med., vol. 382, pp. 727-733, 2020.

W. Li, M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, et al. “Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus,” Nature, vol. 426, pp. 450-454, 2003.

H. Hoffmann, K. Pyrc, L. van der Hoek, M. Geier, B. Berkhout, S. Pohlmann, et al. “Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry.” Proc. Natl. Acad. Sci. USA, vol. 102, pp. 7988–7993, 2005.

L. Du, Y. He, Y. Zhou, S. Liu, B. J. Zheng, S. Jiang, et al. “The spike protein of SARS-CoV – a target for vaccine and therapeutic development.” Nat. Rev. Microbiol, vol. 7, pp. 226-236, 2009.

L. Du, Y. Yang, Y. Zhou, L. Lu, F. Li., S. Jiang, et al. “MERS-CoV spike protein: a key target for antivirals.” Expert. Opin. Ther. Targets, vol. 21, pp. 131-143., 2017.

L. Cantuti-Castelvetri, R. Ojha, L. D. Pedro, M. Djannatian, J. Franz, S. Kuivanen, et al. “Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity.” Science, vol. 370, pp. 856-860, 2020.

J. L. Daly, B. Simonetti, K. Klein, K. E. Chen, M. K. Williamson, C. Anton-Plagaro, et al. “Neuropilin-1 is a host factor for SARS-CoV-2 infection.” Science, vol. 370, pp. 861-865, 2020.

X. Ou, Y. Liu, X. Lei, P. Li, D. Mi, L. Ren, et al. “Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV.” Nat. Commun., vol. 11, pp. 1620, 2020.

M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, et al. “SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.” Cell, vol. 16, no. 181, pp. 271–280, 2020.

J. A. Jaimes, N. M. André, J. S. Chappie, K. Jean, and J. K. Millet. “Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop.” J. Mol. Biol. vol. 432, no. 10, pp. 3309–3325, 2020.

B. J. Bosch, R. van der Zee, C. A. de Haan, and P. J. Rottier. “The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex.” J. Virol. vol. 77, no. 16, pp. 8801-8811, 2003.

A. R. Fehr, and S. Perlman. “Coronaviruses: an overview of their replication and pathogenesis.” Methods Mol. Biol. vol. 1282, pp. 1-23, 2015.

J. Zhang, X. Rao, Y. Li, Y. Zhu, F. Liu, G. Guo, et al. “High dose vitamin C infusion for the treatment of critically ill COVID-19.” Ann Intensive Care, vol. 11, no. 1, pp. 5, 2021.

V. K. Bhardwaj, R. Singh, J. Sharma, V. Rajendran, R. Purohit, and S. Kumar. “Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors.” J Biomol Struct Dyn, vol.39, no. 10, pp. 3449-3458, 2021.

A. Andreou, S. Trantza, D. Filippou, N. Sipsas, S. Tsiodras. “COVID-19: The Potential Role of Copper and N-acetylcysteine (NAC) in a Combination of Candidate Antiviral Treatments Against SARS-CoV-2.” In vivo 34, suppl. 3, 1567-1588, 2020.

L. Chen, C. Hu, M. Hood, X. Zhang, L. Zhang, J. Kan, et al. “A Novel Combination of Vitamin C, Curcumin and Glycyrrhizic Acid Potentially Regulates Immune and Inflammatory Response Associated with Coronavirus Infections: A Perspective from System Biology Analysis.” Nutrients, vol. 12, no. 4, pp. 1193, 2020.

V. Ivanov, S. Ivanova, A. Niedzwiecki, and M. Rath. (January 2021). “Effective and safe global public health strategy to fight the COVID-19 pandemic: Specific micronutrient combination inhibits Coronavirus cell-entry receptor (ACE2) expression.” J. Cell. Med. & Nat. Health. [Online].

Available:https://jcmnh.org/index.php/2020/07/02/effective-and-safe-global-public-health-strategy-to-fight-the-covid-19-pandemic-specific-micronutrient-composition-inhibits-coronavirus-cell-entry-receptor-ace2-expression/.

A. Goc, W. Sumera, V. Ivanov, A. Niedzwiecki, and M. Rath, M. (August 2020) “Micronutrient combination inhibits two key steps of coronavirus (SARS-CoV-2) infection: viral binding to ACE2 receptor and its cellular expression.” J. Cell. Med. & Nat. Health. [Online]. Available:https://jcmnh.org/index.php/2020/08/14/micronutrient-combination-inhibits-two-key-steps-of-coronavirus-sars-cov-2-infection-viral-binding-to-ace2-receptor-and-its-cellular-expression/.

R. Pászti-Gere, R. Czimmermann, G. Ujhelyi, P. Balla, A. Maiwald, and T. Steinmetzer. (2016) “In vitro characterization of TMPRSS2 inhibition in IPEC-J2 cells.” J. Enzyme Inhib. Med. Chem., vol. 31, suppl. 9, pp. 123-129, 2016.

I. Glowacka, S. Bertram, M. A. Müller, P. Allen, E. Soilleux., S. Pfefferle, et al. (2011) “Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response,” J. Virol. vol. 85, no. 9, pp. 4122-4134, 2011.

Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M., et al. (2019) “TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection.” J. Virol. 93, 01815-01818.

T. Liu, S. Luo, P. Libby, and G. P. Shi. “Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients.” Pharmacol. Ther. Vol. 213, pp. 107587, 2011.

S. Tian, Q. Huang, Y. Fang, J. Wu. “Furin DB: A database of 20-residue furin cleavage site motifs, substrates and their associated drugs.” Int. J. Mol. Sci., vol. 12, no. 2. pp. 1060–1065, 2011.

K. E. Follis, J. York, J. H. Nunberg. “Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry.” Virology, vol. 350, no. 2, pp. 358–369. 2006.

B. A. Johnson, X. Xie, B. K. Kumari, G. Lokugamage, A. Muruato, A., J. Zou, et al. (2020) “Furin Cleavage Site Is Key to SARS-CoV-2 Pathogenesis.” bioRxiv, [Preprint], Aug 26:2020.08.26.268854, 2020.

Y. Ming, and L. Qiang. “Involvement of Spike Protein, Furin, and ACE2 in SARS-CoV-2-Related Cardiovascular Complications.” SN Compr. Clin. Med. [Online ahead of print] vol. 11, 1-6, 2020.

E. K. Barbour, E. G. Rayya, A. S. Houssam, R. G. El-Hakim, A. Niedzwiecki, et al. “Alleviation of Histopathologic Effects of Avian Influenza Virus by a Specific Nutrient Synergy.” Int. J. Appl. Res. Vet. Med. vol. 5, pp. 9-16, 2007.

P. G. Deryabin, D. K. Lvov, A. G. Botikov, V. Ivanov, T. Kalinovsky, A. Niedzwiecki, et al. “Effects of a nutrient mixture on infectious properties of the highly pathogenic strain of avian influenza virus A/H5N1.” BioFactors, vol. 33, no. 2, pp. 85-97, 2008.

R. J. Jariwalla, M. W. Roomi, B. Gangapurkar, T. Kalinovsky, A. Niedzwiecki., M. Rath, “Suppression of influenza A virus nuclear antigen production and neuraminidase activity by a nutrient mixture containing ascorbic acid, green tea extract and amino acids.” BioFactors, vol. 31, no. 1, pp 1-15, 2007.

R. J. Jariwalla, B. Gangapurkar, A. Pandit, T. Kalinovsky, A. Niedzwiecki, and M. Rath, “Micronutrient Cooperation in Suppression of HIV Production in Chronically and Latently Infected Cells.” Mol. Med. Rep. vol. 3, no. 3, pp. 377-385, 2010.

##plugins.themes.bootstrap3.article.details##

How to Cite
Goc, A., Ivanov, V., Ivanova, S., Chatterjee, M., Rath, M., & Niedzwiecki, A. (2021). Simultaneous Inhibition of SARS-CoV-2 Infectivity by a Specific Combination of Plant-derived Compounds. European Journal of Biology and Biotechnology, 2(5), 24–33. https://doi.org/10.24018/ejbio.2021.2.5.258