##plugins.themes.bootstrap3.article.main##

Petroleum hydrocarbons are among the major driving forces of advancement in the last Century. Some of the hydrocarbons especially polycyclic aromatics are however of health and environmental significance, due to their recalcitrance and persistence leading to adverse effects on health and ecosystem stability. A number of treatment technologies have been used to cleanup hydrocarbon contaminants and the use of phytoremediation technology have recently been described as promising. In this study, phytoremediation of weathered crude oil contaminated soil was carried out in a microcosm using Pennisetumpurpureum for 60 days. Pristine soil samples were collected and mixed with weathered petroleum contaminated soil to achieve 5%, 25%, 35% and 50% w/w contamination levels. Bacterial species in the rhizosphere were isolated and identified and residual oil was extracted and analyzed using GC-MS. Results showed that there was high bacterial population in rhizosphere (5.0×105 cfu/g to 6.4×105 cfu/g) than non-rhizosphere soil (2.4 ×105 cfu/g to 4.0×105 cfu/g); and Bacillus spp. (64.71%) were observed to be predominant in the rhizosphere followed by Micrococcus spp. (17.65%), Pseudomonas aeruginosa (5.88%), Klebsiella pneumoniae (5.88%) and Flavobacterium sp. (5.88%). Hydrocarbon concentration in the rhizosphere was reduced by 82.5%, 60.5%, 58.0% and 48.8% respectively. Complex polycyclic aromatic hydrocarbon compounds detected in the control using GC-MS were significantly reduced or completely degraded. Polycyclic aromatic hydrocarbons such as anthracene, naphthalene, fluorene, benzo (a) anthracene, pyrene and chrysene were significantly reduced at a rate ranging between 13.33% and 97.54%. Based on the rate of PAHs reduction observed in this study, it was evident that P. purpureumsupports cleanup of persistent hydrocarbon contaminants in soil environment. The use of this plant in large scale petroleum hydrocarbon cleanup under field conditions should be investigated.

References

  1. Abdel-Shafy, H. I. & Mansour, M. S. M. (2015). A Review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation, Egyptian Journal of Petroleum.
     Google Scholar
  2. Abubakar, B. M, LawaL, A., & Argungu, L. A., (2015). Preliminary evolution of soil from Kwalkwalawa (Sokoto) and Bakolori (Talata Mafara) regions used for rice and farming activities, Journal of Agricultural Science and Technology, 5: 247-251.
     Google Scholar
  3. Acosta-González, A., Martirani-von Abercron, S.-M., Rosselló-Móra, R., Wittich, R.-M. & Marqués, S. (2015). The effect of oil spills on the bacterial diversity and catabolic function in coastal sediments: A case study on the prestige oil spill. Environ. Sci. Pollut. Res. 22, 15200–15214.
     Google Scholar
  4. Adieze, I. E., Orji, J. C., Nwabueze, R. N. & Onyeze, G. O. C. (2012). Hydrocarbon stress response of four tropical plants in weathered crude oil contaminated soil in microcosms. Int. J. Environ. Stud. 69(3):490–500.
     Google Scholar
  5. Agarwal, P., Giri, B. S. & Rani, R. (2020). Unravelling the role of rhizospheric plant-microbe synergy in phytoremediation: a genomic perspective. Curr. Genom.
     Google Scholar
  6. Aislabie, J. M., Balks, M. R. & Foght, J. M. (2004). Hydrocarbon spills on Antarctic soils: Effects and management. Environmental Science & Technology, 38(5): 1265–1274. doi: 10.1021/es0305149
     Google Scholar
  7. Akunwumi, I. I., Diwa, D. & Obianigwe, N. (2014). Effects of crude oil contamination on the index properties, strength and permeability of lateritic clay. Int J Appl Sci Eng Res 3:816–824.
     Google Scholar
  8. Akyuz, H. M. & Cabuk, H. (2010). Gas–particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Science of the Total Environment; 408: 5550–5558.
     Google Scholar
  9. AL Sbani, N. H., Abdullah, S. R. S., Idris, M., Hasan, H. A., Halmi, M. I. E., Jehawi, O. H., & Ismail, N. ’Izzati. (2020). PAH-degrading rhizobacteria of Lepironia articulata for phytoremediation enhancement. Journal of Water Process Engineering, 101688.
     Google Scholar
  10. Alikasturi, A. S., Mokhtar, M. I., Zainuddin, M. A., Serit, M. E., & Rahim, N. S. A. (2020). Phytoremediation of lead in mineral, distilled and surface water using Pennisetum purpureum and Allium fistulosum. Materials Today: Proceedings, 31, A175-A179.
     Google Scholar
  11. Arellano, P., Tansey, K., Balzter, H. & Tellkamp, M. (2017). Plant family-specific impacts of petroleum pollution on biodiversity and leaf chlorophyll content in the Amazon rainforest of Ecuador. PLoS ONE, 12(1): e0169867.
     Google Scholar
  12. Arey, J. &Atkinson, R. (2003). Photochemical reactions of PAH in the atmosphere, In: Douben, P. E. T. (Ed.), PAHs: An Ecotoxicological Perspective (pp. 47–63) John Wiley and Sons Ltd, New York.
     Google Scholar
  13. Barba, S., Villasenor, J., Rodrigo, M. A., & Cañizares, P. (2021). Biostimulation versus bioaugmentation for the electro-bioremediation of 2, 4-dichlorophenoxyacetic acid polluted soils. Journal of Environmental Management, 277, 111424.
     Google Scholar
  14. Barrow, G. & Feltham, K. (1993). Cowan and Steel’s manual for identification of medical bacteria. London: Cambridge University Press.
     Google Scholar
  15. Benson, H. (2002). Microbiological applications laboratory manual. 8th ed. New York: McGraw-Hill Companies.
     Google Scholar
  16. Bento, F. M., Camargo, F. A., Okeke, B. C., & Frankenberger, W. T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource technology, 96(9), 1049-1055.
     Google Scholar
  17. Boonmeerati, U., & Sampanpanish, P. (2021). Enhancing Arsenic phytoextraction of dwarf napier grass (pennisetum purpureum cv. mott) from gold mine tailings by electrokinetics remediation with phosphate and EDTA. Journal of Hazardous, Toxic, and Radioactive Waste, 25(4), 04021027.
     Google Scholar
  18. Brimecombe, M. J., De Leij, F. A. M. & Lynch, J. M. (2007). Rhizodeposition and microbial populations. In: R. Pinton., Z. Varanini. and P. Nannipieri. (eds). The Rhizosphere: biochemistry and organic substances at the soil-plant interface, (pp 73–109). New York, CRC Press, Taylor & Francis Group.
     Google Scholar
  19. CABI, 2014. Invasive Species Compendium. Wallingford, UK: CAB International
     Google Scholar
  20. Cerniglia, C. E. (1993). Biodegradation of polycyclic aromatic hydrocarbons. Current Opinion in Biotechnology, 4(3), 331–338.
     Google Scholar
  21. Chikere, C. B., & Ekwuabu, C. B. (2014). Culture-dependent characterization of hydrocarbon utilizing bacteria in selected crude oil-impacted sites in Bodo, Ogoniland, Nigeria. African Journal of Environmental Science and Technology, 8(6), 401-406.
     Google Scholar
  22. D’Souza, R., Varun, M., Lakhani, A., Singla, V. & Paul, M. S. (2015). PAH contamination of urban soils and phytoremediation. In: A.A. Ansari (eds.), Phytoremediation: Management of Environmental Contaminants, 1.
     Google Scholar
  23. Das, A., Belgaonkar, P., Raman, A. S., Banu, S., & Osborne, J. W. (2017). Bioremoval of lead using Pennisetum purpureum augmented with Enterobacter cloacae-VITPASJ1: A pot culture approach. Environmental Science and Pollution Research, 24(18), 15444-15453.
     Google Scholar
  24. Devatha, C. P., Vishnu Vishal, A., & Purna Chandra Rao, J. (2019). Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Applied Water Science, 9(4).
     Google Scholar
  25. Dhivya, H., Seeli, B., Madhan, and Akila, S. (2014). Production of amphiphilic surfactant molecule from Saccharomyces cerevisia MTCC 181 and its Protagonistin Nanovesicle Synthesis. International Journal of Science, Invention; 3(11):16-23.
     Google Scholar
  26. Dudhagara, D. R., Rajpara, R. K., Bhatt, J. K., Gosai, H. B., Sachaniya, B. K. & Dave, B. P. (2016). Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environmental pollution. 213: 338-46.
     Google Scholar
  27. Environmental Protection Agency EPA (1999). Understanding Oil Spills And Oil Spill Response. EPA Office of Emergency and Remedial Response. OSWER 9200.5-104A.
     Google Scholar
  28. Erute, M. O., Mary, Z. & Gloria, O. (2009). Effect of crude oil on growth of the weed (Paspalum scrobiculatum L.) phytoremediation potential of plant. African Journal of Environmental Science and Technology, 3 (9), 229-233.
     Google Scholar
  29. Farrell, R. E., & Germida, J. J. (2002). Phytotechnologies: Plant-based Systems for remediation of oil impacted soils. Available from https://www.esaa.org/wp-content/uploads/2015/06/02-09FarrellPaper
     Google Scholar
  30. Freedman, B. (2018). Environmental science. Canada: Dalhousie University Libraries Digital Editions.
     Google Scholar
  31. Gabriele, I., Race, M., Papirio, S., & Esposito, G. (2021). Phytoremediation of pyrene-contaminated soils: A critical review of the key factors affecting the fate of pyrene. Journal of Environmental Management, 293, 112805.
     Google Scholar
  32. Gichangi, E. M., Njarui, D. M. G., Gatheru, M., Ndungu-Magiroi, K. W., & Ghimire, S. R. (2016). Effects of Brachiaria grass cultivars on soil microbial biomass carbon, nitrogen and phosphorus in soils of the semi-arid Eastern Kenya. Climate Smart Brachiaria Grasses for Improving Livestock Production in East Africa‒Kenya Experience, 179.
     Google Scholar
  33. Glick, B. R. (2012) Plant growth promoting bacteria: mechanisms and applications. Scientifica.
     Google Scholar
  34. Guo, D., Fan, Z., Lu, S., Ma, Y., Nie, X., Tong, F., & Peng, X. (2019). Changes in rhizosphere bacterial communities during remediation of heavy metal-accumulating plants around the Xikuangshan mine in southern China. Scientific reports, 9(1), 1-11.
     Google Scholar
  35. Gupta, G., Kumar, V., & Pal, A. K. (2019). Microbial degradation of high molecular weight polycyclic aromatic hydrocarbons with emphasis on pyrene. polycyclic aromatic compounds.
     Google Scholar
  36. Heuzé, V., Tran G., Giger-Reverdin S. & Lebas F., (2020). Elephant grass (Pennisetum purpureum). Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. https://feedipedia.org/node/395
     Google Scholar
  37. Hoang, S. A., Lamba, D., Seshadria, B., Sarkarb, B., Choppalaa, G., Kirkhamc, M. B., & Bolana, N. S. (2021). Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon contaminated soils. Journal of Hazardous Materials, 401, 123282.
     Google Scholar
  38. Islam, M. S., Sarker, N. R., Habib, M. A., Ali, M. Y. & Yeasmin, T. (2017). Effect of different soil types on growth and production of Napier-4 at the Regional Station of BLRI. Asian Journal of Medical and Biological Research 3(2): 182-185.
     Google Scholar
  39. Jin, M., Shi, W., Yuen, K. F., Xiao, Y. & Li, K. X. (2019). Oil tanker risks on the marine environment: An empirical study and policy implications. Marine Policy, 108, 103655.
     Google Scholar
  40. Jonker, M. T., Brils, J. M., Sinke, A. J., Murk, A. J. & Koelmans, A. A. (2006). Weathering and toxicity of marine sediments contaminated with oils and polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem. 25, 1345-1353.
     Google Scholar
  41. Kang, D. J., Seo, Y. J., Saito, T., Suzuki, H. & Ishii, Y. 2012. Uptake and translocation of cesium-133 in napier grass (Pennisetum purpureum Schum.) under hydroponic conditions. Ecotoxicology and environmental safety 82: 122-126.
     Google Scholar
  42. Kuppusamy, S., Maddela, N. R., Megharaj, M., & Venkateswarlu, K. (2019). Case Studies on Remediation of Sites Contaminated with Total Petroleum Hydrocarbons. Total Petroleum Hydrocarbons, 225–256.
     Google Scholar
  43. Li, N., Liu, R., Chen, J., Wang, J., Hou, L., & Zhou, Y. (2021). Enhanced phytoremediation of PAHs and cadmium contaminated soils by a Mycobacterium. Science of the Total Environment, 754, 141198.
     Google Scholar
  44. Lin, Q. & Mendelssohn, I. A., (2012). Impacts and recovery of the deep water horizon oil spill on vegetative structure and function of coastal salt marsh in the Northern Gulf of Mexico. Environmental Science & Technology, 46(7): 3737–3743.
     Google Scholar
  45. Liu, X., Shen, Y., Lou, L., Ding, C. & Cai, Q. (2009). Copper tolerance of the biomass crops Elephant grass (Pennisetum purpureum Schumach), Vetiver grass (Vetiveria zizanioides) and the upland reed (Phragmites australis) in soil culture. Biotechnology Advances 27(5):633-640.
     Google Scholar
  46. Lundstedt, S., Paul, A. W., Christine, L. L., Krista, D. L., Iain, B. L., Lars, Ö., Peter, H. & Mats, T. (2007). Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. AMBIO: A Journal of the Human Environment 36, no. 6 (2007): 475-485.
     Google Scholar
  47. Maceiras, R. (2016). Emerging technologies for soil remediation of hydrocarbons. Pharm Anal Chem, 2(01), 102.
     Google Scholar
  48. Margesin, R., Labbé, D., Schinner, F., Greer, C. W., & Whyte, L. G. (2003). Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ.Microbiol. 69, 3085–3092.
     Google Scholar
  49. Meng, F. & Chi, J. (2017). Effect of Potamogeton crispus L. on bioavailability and biodegradation activity of pyrene in aged and unaged sediments. J. Hazard Mater.
     Google Scholar
  50. Mishra, S., Mulla, S. I., Saha, S., Kharat, A S., More, N. & Bharagava, R. N. (2021). Involvement of synergistic interactions between plant and rhizospheric microbes for the removal of toxic/hazardous contaminants. In: Sharma, A. (Ed.). Microbes and Signaling Biomolecules against Plant Stress. Rhizosphere Biology.
     Google Scholar
  51. Mohamadi, B., Liu, F. & Xie, Z. (2016). Oil spill influence on vegetation in nigeria and its determinants. Pol. J. Environ. Stud. 25(6): 2533-2540.
     Google Scholar
  52. Monna, L., OioPa, T. & Kodama, T. (1993). Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Appl Environ Microbiol 1993, 59:285-289.
     Google Scholar
  53. Moradi, B., Maivan, H. Z., Hashtroudi, M. S., Sorahinobar, M., & Rohloff, J. (2021). Physiological responses and phytoremediation capability of Avicennia marina to oil contamination. Acta Physiologiae Plantarum, 43(2), 1-12.
     Google Scholar
  54. Sojinu, O. S., & Ejeromedoghene, O. (2019). Environmental challenges associated with processing of heavy crude oils. Processing of heavy crude oils - challenges and opportunities.
     Google Scholar
  55. Olahan, G. S., Sule, I. O., Garuba, T. & Salawu, Y. A. (2016). Rhizosphere and non-rhizosphere soil mycoflora of Corchorus olitorius (Jute). Science World Journal, 11 (No 3):23-26.
     Google Scholar
  56. Ordinioha, B. & Brisibe, S. (2013). The human health implications of crude oil spills in the Niger Delta, Nigeria: An interpretation of published studies. Nigerian Medical Journal; 54:10-16.
     Google Scholar
  57. Osmana, N. A., Roslana, A. M., Ibrahima, M. F., & Hassana, M. A. (2020). Potential use of Pennisetum purpureum for phytoremediation and bioenergy production: A mini review. Sci. Rep, 10, 6613.
     Google Scholar
  58. Peer, W. A., Baxter, I. R., Richards, E. L., Freeman, J. L., & Murphy, A. S. (2006). Phytoremediation and hyperaccumulator plants. In Molecular Biology of Metal Homeostasis and Detoxification (pp. 299–340). Springer.
     Google Scholar
  59. Pinedo, J., Ibáñez, R. J., Lijzen, P. A. & Irabien, A. (2013). Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances. Journal of Environmental Management, 130: 72-79.
     Google Scholar
  60. Pinton, R., Varanini, Z. & Nannipieri, P. (2007). The rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC Press: Boca Raton, FL, USA, 2007.
     Google Scholar
  61. Peng, R. H., A. S. Xiong, Y. Xue, X.Y. Fu, F. Gao, W. Zhao, Y. S. Tian, Q. H. Yao. (2008). Microbial biodegradation of polyaromatic hydrocarbons, FEMS Microbiol. Rev. 32: 927–955,
     Google Scholar
  62. Rahman, M. M., Ishii, Y., Niimi, M. & Kawamura, O. (2008). Effect of salinity stress on dry matter yield and oxalate content in napier grass (Pennisetum purpureum Schumach). Asian-Australasian Journal of Animal Sciences, 21(11): 1599-1603.
     Google Scholar
  63. Riazi, M. R. (2021). Oil spill occurrence, simulation, and behavior (1st ed.). CRC Press.
     Google Scholar
  64. Riskuwa-Shehu, M. L., & Ismail, H. Y. (2018). Isolation of endophytic bacteria and phytoremediation of soil contaminated with polycyclic aromatic hydrocarbons using Cajanus cajan and Lablab purpereus. Bioremediation Science and Technology Research, 6(1):26-30. https://journal.hibiscuspublisher.com/index.php/BSTR/issue/view/42.
     Google Scholar
  65. Semple, K. T., Doick, K. J., Wick, L. Y. & Harms, H. (2007). Microbial interactions with organic contaminants in soil: Definitions, processes and measurement. Environ. Pollut. 150, 166-176.
     Google Scholar
  66. Speight, J. G. (2006). The Chemistry and Technology of Petroleum. CRC Press.
     Google Scholar
  67. Vangronsveld, J., Weyens, N., Thijs, S., Dubin, D., Clemmens, M., Van Geert, K., van den Eeckhaut, M., van den Bossche, P., van Gestel, G., Bruneel, N., Crauwels, L. & Lemmens, C. (2019). Phytoremediation – Code of good practice. Ovam, 1-132. http://www.ovam.be
     Google Scholar
  68. Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223, 277–286.
     Google Scholar
  69. Vidali, M. (2001). Bioremediation: An overview. Pure and applied chemistry, 73(7), 1163-1172.
     Google Scholar
  70. Videira, S. S., e Silva, M. D. C. P., de Souza Galisa, P., Dias, A. C. F., Nissinen, R., Divan, V. L. B. & Salles, J. F. (2013). Culture-independent molecular approaches reveal a mostly unknown high diversity of active nitrogen-fixing bacteria associated with Pennisetum purpureum—a bioenergy crop. Plant and soil, 373(1): 737-754.
     Google Scholar
  71. Wang, Y., Feng, J., Lin, Q., Lyu, X., Wang X. & Wang, G. (2013). Effects of crude oil contamination on soil physical and chemical properties in Momoge Wetland of China. Chinese Geographical Science, 23(6): 708–715.
     Google Scholar
  72. Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q., Jiang, P., Gao, X., Li, F., Li, H. & Yu, H. (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Front. Microbiol. 9: 2885.
     Google Scholar
  73. Xuezhi, D., Anum, A. A., Ishaq, M., Tariq, S., & Qudratullah, K. (2020). Remediation methods of crude oil contaminated soil. World J Agri & Soil Sci., 4(3), 34–46.
     Google Scholar
  74. Yadav, I. C., Devi, N. L., Li, J., & Zhang, G. (2018). Polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: Implication on source apportionment and toxicological effect. Science of the Total Environment, 616-617, 223–235.
     Google Scholar
  75. Yaqoob, A., Nasim, F. H., Sumreen, A., Munawar, N., Zia, M. A., Choudhary, M. S. & Ashraf, M. (2019). Current scenario of phytoremediation: progresses and limitations. International Journal of Biosciences, 14(3), 191-206.
     Google Scholar
  76. Zahui, F., Yeo, É., Ouattara, J. & Coulibaly, L. (2021). Bacteriological quality of a forage grass (Pennisetum purpureum Schumach) used in constructed wetland removing domestic wastewater pathogenic microorganism. Journal of Environmental Protection, 12, 311-327.
     Google Scholar