##plugins.themes.bootstrap3.article.main##

Aim: This study aimed at evaluating the antioxidant activities of extracts from four vegetables namely: Beta vulgaris, Raphanus sativus, and two varieties (red and green) of Brassica oleracea.

Method: The antioxidant properties of these extracts were assessed using five different methods including 2,2-diphényl 1-picrylhydrazyl (DPPH), Nitrogen Oxyde (NO), total reducing power, total phenolic and flavonoids content.

Results: All the four vegetable extracts showed free radical-scavenging activity against DPPH· with RSa50 (Radical scavenging activity 50) ranging between 129.77 and 323.64 µg/ml, and inhibitory activity against NO radical (RSa50 ranging from 1454,52 to 4479,97 µg/ml). The four vegetable extracts also showed total reducing powers ranging between 2.41 and 9.37 AAE (mg ascorbic acid equivalents per gram of dried extract). These antioxidant activities can be justified by the presence of different antioxidant compounds like total phenol contents which were present in all studied vegetable extracts with quantities varying between 4.37 and 11.83 GAE (mg of garlic acid equivalents per gram of dried extract) of dry extract, or flavonoids which were also present in all the plants with total contents ranging between 0.1 and 0.25 RE (rutin equivalents per gram of dried extract).

Conclusion: The different antioxidant activities demonstrated in this study provide scientific evidence that some vegetables commonly consumed in Cameroon including B. oleracea, R. sativus and B. vulgaris can serve as a dietary supplement or in preventive medicine in the management of oxidative stress and associated pathologies.

 

References

  1. agatini, M. D., Jaques, J. A. d. S., de Oliveira, C. S. J. N. P. i. O., & Stress, N. (2018). Oxidative stress: noxious but also vital.
     Google Scholar
  2. Barillari, J., Cervellati, R., Costa, S., Guerra, M. C., Speroni, E., Utan, A., et al. (2006). Antioxidant and Choleretic Properties of Raphanus sativus L. Sprout (Kaiware Daikon) Extract. Journal of Agricultural and Food Chemistry, 54(26), 9773-9778.
     Google Scholar
  3. Beevi, S. S., Mangamoori, L. N., & Gowda, B. B. (2012). Polyphenolics profile and antioxidant properties of Raphanus sativus L. Nat Prod Res, 26(6), 557-563.
     Google Scholar
  4. Bidchol, A., Wilfred, A., Abhijna, P., & Harish, R. (2012). Free Radical Scavenging Activity of Aqueous and Ethanolic Extract of Brassica oleracea L. var. italica. Food and Bioprocess Technology, 4, 1137-1143.
     Google Scholar
  5. Block, G., Patterson, B., & Subar, A. (1992). Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer, 18(1), 1-29.
     Google Scholar
  6. Brooks, J. D., Paton, V. G., & Vidanes, G. (2001). Potent Induction of Phase 2 Enzymes in Human Prostate Cells by Sulforaphane. 10(9), 949-954.
     Google Scholar
  7. Bruneton, J. (2020). Farmacognosia : fitoquímica, plantas medicinales / Jean Bruneton. SERBIULA (sistema Librum 2.0).
     Google Scholar
  8. Cheney, G. (1950). Anti-peptic ulcer dietary factor (vitamin "U") in the treatment of peptic ulcer. J Am Diet Assoc, 26(9), 668-672.
     Google Scholar
  9. Clifford, T., Howatson, G., West, D. J., & Stevenson, E. J. (2015). The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7(4), 2801-2822.
     Google Scholar
  10. Crozier, A., Jaganath, I., & Clifford, M. (2009). ChemInform Abstract: Dietary Phenolics: Chemistry, Bioavailability and Effects on Health. Natural product reports, 26, 1001-1043.
     Google Scholar
  11. Djeussi, D. E., Noumedem, J. A. K., Mihasan, M., Kuiate, J.-R., & Kuete, V. (2020). Antioxidant Activities of Methanol Extracts of Thirteen Cameroonian Antibacterial Dietary Plants. Journal of Chemistry, 2020, 8886762.
     Google Scholar
  12. El Atki, Y., Aouam, I., El kamari, F., Taroq, A., Lyoussi, B., Taleb, M., et al. (2019). Total phenolic and flavonoid contents and antioxidant activities of extracts from Teucrium polium growing wild in Morocco. Materials Today: Proceedings, 13, 777-783.
     Google Scholar
  13. Eveline, & Pasau, R. L. (2019). Antioxidant Activity and Stability of Radish Bulbs (Raphanus sativus L.) Crude Extract. IOP Conference Series: Earth and Environmental Science, 292(1), 012036.
     Google Scholar
  14. Ferreres, F., Sousa, C., Pereira, D., Valentão, P., Taveira, M., Martins, A., et al. (2009). Screening of Antioxidant Phenolic Compounds Produced by In Vitro Shoots of Brassica oleracea L. var. costata DC. Combinatorial chemistry & high throughput screening, 12, 230-240.
     Google Scholar
  15. Georgiev, V. G., Weber, J., Kneschke, E. M., Denev, P. N., Bley, T., & Pavlov, A. I. (2010). Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Foods Hum Nutr, 65(2), 105-111.
     Google Scholar
  16. Goyeneche, R., Roura, S., Ponce, A., Vega-Gálvez, A., Quispe-Fuentes, I., Uribe, E., & Di Scala, K. (2015). Chemical characterization and antioxidant capacity of red radish (Raphanus sativus L.) leaves and roots. Journal of Functional Foods, 16, 256-264.
     Google Scholar
  17. Kasote, D. M. (2013). Flaxseed phenolics as natural antioxidants. International Food Research Journal, 20(1), 27-34.
     Google Scholar
  18. Kim, J. K., Baskar, T., & Park, S. (2016). Total Phenolic and Flavonoid Contents and Antioxidant Activities of Two Raphanus sativus L. cultivars (Cherry Belle and Valentine). Biosciences, Biotechnology Research Asia, 13, 31-36.
     Google Scholar
  19. Kuete, V., Mbaveng, T. A., Tsafack, M., Beng, P. V., Etoa, F. X., Nkengfack, A. E., . . . Lall, N., b. . (2008). Antitumor, antioxidant and antimicrobial activities of Bersama engleriana (Melianthaceae). Journal of Ethnopharma-cology, 115, 494-501.
     Google Scholar
  20. Liang, Y., Li, Y., Zhang, L., & Liu, X. (2019). Phytochemicals and antioxidant activity in four varieties of head cabbages commonly consumed in China. Food Production, Processing and Nutrition, 1.
     Google Scholar
  21. Loganayaki, N., Siddhuraju, P., & Manian, S. (2013). Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. Journal of food science and technology, 50(4), 687-695.
     Google Scholar
  22. M, A., & Rameshwari. K, S. (2015). Assessment of Antioxidant activity in Brassica oleracea var. capitata rubra. Journal of Medical Science And clinical Research.
     Google Scholar
  23. Niggeweg, R., Michael, A. J., & Martin, C. J. N. b. (2004). Engineering plants with increased levels of the antioxidant chlorogenic acid. 22(6), 746-754.
     Google Scholar
  24. Noman, O. M., Nasr, F. A., Alqahtani, A. S., Al-zharani, M., Cordero, M. A. W., et al. 2021). Comparative study of antioxidant and anticancer activities and HPTLC quantification of rutin in white radish (Raphanus sativus L.) leaves and root extracts grown in Saudi Arabia %J Open Chemistry. 19(1), 408-416.
     Google Scholar
  25. Noumedem, J. A., Tamokou, J. d. D., Teke, G. N., Momo, R. C., Kuete, V., & Kuiate, J. R. (2013). Phytochemical analysis, antimicrobial and radical-scavenging properties of Acalypha manniana leaves. SpringerPlus, 2, 503-503.
     Google Scholar
  26. Okello, D., Chung, Y., Kim, H., Lee, J., Rahmat, E., Komakech, R., et al. (2021). Antioxidant Activity, Polyphenolic Content, and FT-NIR Analysis of Different Aspilia africana Medicinal Plant Tissues. Evidence-Based Complementary and Alternative Medicine, 2021, 9917810.
     Google Scholar
  27. Rabeh, N. M. (2015). Effect of Red Beetroot (Beta vulgaris L.) And its Fresh Juice Against Carbon Tetrachloride Induced Hepatotoxicity in Rats.
     Google Scholar
  28. Ramos, J., Furlaneto, K., Mendonça, V., Mariano-Nasser, F., Lundgren, G., Fujita, E., et al. (2017). Influence of cooking methods on bioactive compounds in beetroot. Semina: Ciências Agrárias, 38, 1295.
     Google Scholar
  29. Randhir, R., Lin, Y. T., & Shetty, K. (2004). Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pac J Clin Nutr, 13(3), 295-307.
     Google Scholar
  30. Robards, K., Prenzler, P. D., Tucker, G., Swatsitang, P., & Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry, 66(4), 401-436.
     Google Scholar
  31. Shajiselvin, C. D., & Mutu, A. K. (2010). In vitro free radical scavenging activity of various extracts of whole plant of Borreria hispida L. . Achives of Applied Science Research, 2(2), 54-60.
     Google Scholar
  32. Shehzadi, I., Shah, N. A., Khan, M. R., Shuaib, M., Shah, M., Khan, A., et al. (2020). In vivo Antioxidant Potential of Raphanus sativus Seeds in Rat Kidney Against CCl4-Induced Toxicity. Polish Journal of Environmental Studies, 29(1), 277-284.
     Google Scholar
  33. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
     Google Scholar
  34. Soengas Fernández, M. d. P., Sotelo Pérez, T., Velasco Pazos, P., & Cartea González, M. E. (2011). Antioxidant properties of Brassica vegetables.
     Google Scholar
  35. Sonam, C. (2019). Antioxidant Content in Different Parts of Radish (Raphanus sativus L.) from Cold Arid Ladakh region of Trans- Himalaya (Jammu and Kashmir). Pharmacognosy Journal, 11(5).
     Google Scholar
  36. Sotelo, T., Cartea, M. E., Velasco, P., & Soengas, P. (2014). Identification of Antioxidant Capacity -Related QTLs in Brassica oleracea. PLOS ONE, 9(9), e107290.
     Google Scholar
  37. Yang, S.-R., Songzhuzhao, & Boo, H.-O. (2015). Antioxidant Activity of Several Cabbage (Brassica oleracea L.) Cultivars. 한국자원식물학회지, 28(3), 312-320.
     Google Scholar
  38. Yassa, N., Beni, H., & Hadjiakhoondi, A. (2008). Free Radical Scavenging and Lipid Peroxidation Activity of the Shahani Black Grape. Pakistan journal of biological sciences: PJBS, 11, 2513-2516.
     Google Scholar
  39. Zhang, Q., Pan, J., Wang, Y., Lubet, R., & You, M. (2013). Beetroot red (betanin) inhibits vinyl carbamate- and benzo(a)pyrene-induced lung tumorigenesis through apoptosis. Mol Carcinog, 52(9), 686-691.
     Google Scholar