##plugins.themes.bootstrap3.article.main##

Compositae family is not just an extensive family, but, as expected, a different family. Senecio genus is the biggest genus in the family. In the present study, a phytochemical screening of main secondary metabolites present in S. glaucus extracts has been done. In addition to, the antimicrobial, antioxidant and reducing power activity have been measured.

References

  1. Albayrak, S., Aksoy, A., Yurtseven, L., &Yaşar, A. (2014). A comparative study on phenolic components and biological activity of some Senecio species in Turkey. Journal of Pharmacy and Pharmacology, 66(11), 1631-1640.‏
     Google Scholar
  2. Avato, P., & Argentieri, M. (2018). Plant biodiversity: phytochemicals and health. Phytochemistry Reviews, 17(4), 645-656.
     Google Scholar
  3. Benincasa, P., Galieni, A., Manetta, A. C., Pace, R., Guiducci, M., Pisante, M., & Stagnari, F. (2015). Phenolic compounds in grains, sprouts and wheatgrass of hulled and non‐hulled wheat species. Journal of the Science of Food and Agriculture, 95(9), 1795-1803.‏
     Google Scholar
  4. Bhagyawant, S. S., Bhadkaria, A., Narvekar, D. T., & Srivastava, N. (2019). Multivariate biochemical characterization of rice bean (Vigna umbellata) seeds for nutritional enhancement. Biocatalysis and Agricultural Biotechnology, 20, 101193.‏
     Google Scholar
  5. Benson, L. (1957). Plant Classification. Health and Company. Boston. U.S.A.
     Google Scholar
  6. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.‏
     Google Scholar
  7. Bohlmann, F., Zdero, C., Jakupovic, J., Misra, L. N., Banerjee, S., Singh, P., & Robinson, H. (1985). Eremophilane derivatives and other constituents from Senecio species. Phytochemistry, 24(6), 1249-1261.‏
     Google Scholar
  8. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182.
     Google Scholar
  9. Dravie, E. E., Kortei, N. K., Essuman, E. K., Tettey, C. O., Boakye, A. A., & Hunkpe, G. (2020). Antioxidant, phytochemical and physicochemical properties of sesame seed (Sesamum indicum L). Scientific African, 8, e00349.‏
     Google Scholar
  10. Dulger, B., & Gonuz, A. (2004). Antimicrobial activity of some Turkish medicinal plants. Pakistan Journal of Biological Sciences (Pakistan), 7(9), 1559-1562.
     Google Scholar
  11. Ginwala, R., Bhavsar, R., Chigbu, D. G. I., Jain, P., & Khan, Z. K. (2019). Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of Apigenin. Antioxidants, 8(2), 35.‏
     Google Scholar
  12. Harborne, J. B. (1984). Methods of plant analysis. Phytochemical methods (pp. 4-6). Springer, Dordrecht.‏
     Google Scholar
  13. Heywood, V. H., Harborne, J. B., & Turner, B. L. (1977). Biology and Chemistry of the Compositae. Academic Press.‏
     Google Scholar
  14. Juarez, B. E., Mendiondo, M. E., & Seeligmann, P. (1995). Flavonoids from leaves and flowers of Liabum polymnioides and L. candidum (Asteraceae). Chemotaxonomical significance. Biochemical Systematics and Ecology, 23(3), 335-6.
     Google Scholar
  15. Khang, D. T., Dung, T. N., Elzaawely, A. A., & Xuan, T. D. (2016). Phenolic profiles and antioxidant activity of germinated legumes. Foods, 5(2), 27.‏
     Google Scholar
  16. Lincheva, V., Petkova, N., & Ivanov, I. (2017). Optimization of biologically active substances extraction process from Potentilla reptans L. aerial parts. Journal of Applied Pharmaceutical Science, 7(02), 174-179.‏
     Google Scholar
  17. Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 24(22), 4132.‏
     Google Scholar
  18. Mohamed, S. A. (2015). Phytochemical and biological study of (Senecio glaucus subsp. coronopifolius) (MAIRE) C. ALEXANDER Growing in EGYPT. Az. J. Pharm Sci., 52, 283-298.
     Google Scholar
  19. Moukette, B. M., Pieme, C. A., Njimou, J. R., Biapa, C. P. N., Marco, B., & Ngogang, J. Y. (2015). In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica. Biological Research, 48(1), 1-17.‏
     Google Scholar
  20. Ough, C. S., & Amerine, M. A. (1988). Methods for analysis of musts and wines. New York: John Wiley & Sons.‏
     Google Scholar
  21. Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315.‏
     Google Scholar
  22. Parekh, J., & Chanda, S. (2007). In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turkish Journal of Biology, 31(1), 53-58.‏
     Google Scholar
  23. Piero, N. M., Njagi, M. J., Kibiti, M. C., Ngeranwa, J. J. N., Njagi, N. M. E., Njue, M. W., et al. (2012). Herbal management of diabetes mellitus: A rapidly expanding research avenue. Inter. J. of Current Pharmaceutical, Res4(2), 1- 4.
     Google Scholar
  24. Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337-341.‏
     Google Scholar
  25. Singh, D., Sati, S. C., & Sati, M. D. (2017). In vitro antibacterial and antifungal activity of Senecio chrysanthemoides. ‏World Pharmaceutical research, 6(5), 863-868.
     Google Scholar
  26. Tiwari, P., Kumar, B., Kaur, M., G. Kaur, G., &. Kaur, H. (2011). Phytochemical screening and extraction: A review. International Pharmaceutica Sciencia, 1(1), 98-106.
     Google Scholar
  27. Torres, P., Ayala, J., Grande, C., Macías, M. J., & Grande, M. (1998). Furanoeremophilanes and a bakkenolide from Senecio auriculavar. major. Phytochemistry, 47(1), 57-61.‏
     Google Scholar
  28. Vural, N., Cavuldak, Ö. A., Akay, M. A., & Anlı, R. E. (2020). Determination of the various extraction solvent effects on polyphenolic profile and antioxidant activities of selected tea samples by chemometric approach. Journal of Food Measurement and Characterization, 14(3), 1286-1305.‏
     Google Scholar
  29. Wang, H., Gan, D., Zhang, X., & Pan, Y. (2010). Antioxidant capacity of the extracts from pulp of Osmanthus fragrans and its components. LWT-Food science and Technology, 43(2), 319-325.‏
     Google Scholar
  30. Xu, D. P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., ...& Li, H. B. (2017). Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. International journal of molecular sciences, 18(1), 96.‏
     Google Scholar
  31. Yan, Y., Lei, Z., Yu Fang, W., Man Li, C., Chang Hong, H., Yu Cheng, G., et al. (2011). Chemical and pharmacological research on plants from the genus Senecio. Chemistry & Biodiversity, 8(1), 13-72.‏
     Google Scholar


Most read articles by the same author(s)