Phytochemical and Biological Studies of Senecio glaucus subsp. coronopifolius
##plugins.themes.bootstrap3.article.main##
Compositae family is not just an extensive family, but, as expected, a different family. Senecio genus is the biggest genus in the family. In the present study, a phytochemical screening of main secondary metabolites present in S. glaucus extracts has been done. In addition to, the antimicrobial, antioxidant and reducing power activity have been measured.
References
-
Albayrak, S., Aksoy, A., Yurtseven, L., &Yaşar, A. (2014). A comparative study on phenolic components and biological activity of some Senecio species in Turkey. Journal of Pharmacy and Pharmacology, 66(11), 1631-1640.
Google Scholar
1
-
Avato, P., & Argentieri, M. (2018). Plant biodiversity: phytochemicals and health. Phytochemistry Reviews, 17(4), 645-656.
Google Scholar
2
-
Benincasa, P., Galieni, A., Manetta, A. C., Pace, R., Guiducci, M., Pisante, M., & Stagnari, F. (2015). Phenolic compounds in grains, sprouts and wheatgrass of hulled and non‐hulled wheat species. Journal of the Science of Food and Agriculture, 95(9), 1795-1803.
Google Scholar
3
-
Bhagyawant, S. S., Bhadkaria, A., Narvekar, D. T., & Srivastava, N. (2019). Multivariate biochemical characterization of rice bean (Vigna umbellata) seeds for nutritional enhancement. Biocatalysis and Agricultural Biotechnology, 20, 101193.
Google Scholar
4
-
Benson, L. (1957). Plant Classification. Health and Company. Boston. U.S.A.
Google Scholar
5
-
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.
Google Scholar
6
-
Bohlmann, F., Zdero, C., Jakupovic, J., Misra, L. N., Banerjee, S., Singh, P., & Robinson, H. (1985). Eremophilane derivatives and other constituents from Senecio species. Phytochemistry, 24(6), 1249-1261.
Google Scholar
7
-
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182.
Google Scholar
8
-
Dravie, E. E., Kortei, N. K., Essuman, E. K., Tettey, C. O., Boakye, A. A., & Hunkpe, G. (2020). Antioxidant, phytochemical and physicochemical properties of sesame seed (Sesamum indicum L). Scientific African, 8, e00349.
Google Scholar
9
-
Dulger, B., & Gonuz, A. (2004). Antimicrobial activity of some Turkish medicinal plants. Pakistan Journal of Biological Sciences (Pakistan), 7(9), 1559-1562.
Google Scholar
10
-
Ginwala, R., Bhavsar, R., Chigbu, D. G. I., Jain, P., & Khan, Z. K. (2019). Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of Apigenin. Antioxidants, 8(2), 35.
Google Scholar
11
-
Harborne, J. B. (1984). Methods of plant analysis. Phytochemical methods (pp. 4-6). Springer, Dordrecht.
Google Scholar
12
-
Heywood, V. H., Harborne, J. B., & Turner, B. L. (1977). Biology and Chemistry of the Compositae. Academic Press.
Google Scholar
13
-
Juarez, B. E., Mendiondo, M. E., & Seeligmann, P. (1995). Flavonoids from leaves and flowers of Liabum polymnioides and L. candidum (Asteraceae). Chemotaxonomical significance. Biochemical Systematics and Ecology, 23(3), 335-6.
Google Scholar
14
-
Khang, D. T., Dung, T. N., Elzaawely, A. A., & Xuan, T. D. (2016). Phenolic profiles and antioxidant activity of germinated legumes. Foods, 5(2), 27.
Google Scholar
15
-
Lincheva, V., Petkova, N., & Ivanov, I. (2017). Optimization of biologically active substances extraction process from Potentilla reptans L. aerial parts. Journal of Applied Pharmaceutical Science, 7(02), 174-179.
Google Scholar
16
-
Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 24(22), 4132.
Google Scholar
17
-
Mohamed, S. A. (2015). Phytochemical and biological study of (Senecio glaucus subsp. coronopifolius) (MAIRE) C. ALEXANDER Growing in EGYPT. Az. J. Pharm Sci., 52, 283-298.
Google Scholar
18
-
Moukette, B. M., Pieme, C. A., Njimou, J. R., Biapa, C. P. N., Marco, B., & Ngogang, J. Y. (2015). In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica. Biological Research, 48(1), 1-17.
Google Scholar
19
-
Ough, C. S., & Amerine, M. A. (1988). Methods for analysis of musts and wines. New York: John Wiley & Sons.
Google Scholar
20
-
Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315.
Google Scholar
21
-
Parekh, J., & Chanda, S. (2007). In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turkish Journal of Biology, 31(1), 53-58.
Google Scholar
22
-
Piero, N. M., Njagi, M. J., Kibiti, M. C., Ngeranwa, J. J. N., Njagi, N. M. E., Njue, M. W., et al. (2012). Herbal management of diabetes mellitus: A rapidly expanding research avenue. Inter. J. of Current Pharmaceutical, Res4(2), 1- 4.
Google Scholar
23
-
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337-341.
Google Scholar
24
-
Singh, D., Sati, S. C., & Sati, M. D. (2017). In vitro antibacterial and antifungal activity of Senecio chrysanthemoides. World Pharmaceutical research, 6(5), 863-868.
Google Scholar
25
-
Tiwari, P., Kumar, B., Kaur, M., G. Kaur, G., &. Kaur, H. (2011). Phytochemical screening and extraction: A review. International Pharmaceutica Sciencia, 1(1), 98-106.
Google Scholar
26
-
Torres, P., Ayala, J., Grande, C., Macías, M. J., & Grande, M. (1998). Furanoeremophilanes and a bakkenolide from Senecio auriculavar. major. Phytochemistry, 47(1), 57-61.
Google Scholar
27
-
Vural, N., Cavuldak, Ö. A., Akay, M. A., & Anlı, R. E. (2020). Determination of the various extraction solvent effects on polyphenolic profile and antioxidant activities of selected tea samples by chemometric approach. Journal of Food Measurement and Characterization, 14(3), 1286-1305.
Google Scholar
28
-
Wang, H., Gan, D., Zhang, X., & Pan, Y. (2010). Antioxidant capacity of the extracts from pulp of Osmanthus fragrans and its components. LWT-Food science and Technology, 43(2), 319-325.
Google Scholar
29
-
Xu, D. P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., ...& Li, H. B. (2017). Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. International journal of molecular sciences, 18(1), 96.
Google Scholar
30
-
Yan, Y., Lei, Z., Yu Fang, W., Man Li, C., Chang Hong, H., Yu Cheng, G., et al. (2011). Chemical and pharmacological research on plants from the genus Senecio. Chemistry & Biodiversity, 8(1), 13-72.
Google Scholar
31
Most read articles by the same author(s)
-
Abou Hassan,
Tereasa M. Ghabrial,
Magdi A. El Sayed,
Soleiman E. Helaly,
Eman Abdelrady,
Abou El-Hamd H. Mohamed,
A Triterpene and A Phytosterol from Rhynchosia Minima , European Journal of Biology and Biotechnology: Vol. 1 No. 5 (2020)