##plugins.themes.bootstrap3.article.main##

The CRISPR-Cas system discovered in the eighties consists of a series of RNA proteins that signal and messengers of the immune system in prokaryotic organisms to protect against invading antigens of various sources. After the CRISPR-Cas discovery, many research advances were made in the following decades regarding knowledge, techniques, and applications. This showed the system could edit the DNA in an exact and specific manner, which made it very promising to exploit it in various fields, such as the therapeutic field. New therapies of various diseases, industrial applications, food manufacturing, among others, make its impact quite relevant. The following review will focus on the fundamental understanding and implications of CRISPR-Cas techniques has with an ethical and legal view. In addition, to explore some of the applications present and future in the healthcare department, some methods of drug delivery in gene therapy, and new research that is being developed with the CRISPR-Cas technology.

References

  1. Abdelaal, A. S., & Yazdani, S. S. (2020). Development and use of CRISPR in industrial applications. En Genome Engineering via CRISPR-Cas9 System. 177-197.
     Google Scholar
  2. Alkhnbashi, O. S., Meier, T., Mitrofanov, A., Backofen, R., & Voß, B. (2020). CRISPR-Cas bioinformatics. Methods, 172, 3-11.
     Google Scholar
  3. Alsaiari, S. K., Patil, S., Alyami, M., Alamoudi, K. O., Aleisa, F. A., Merzaban, J. S., et al. (2018). Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework. Journal of the American Chemical Society, 140(1), 143-146.
     Google Scholar
  4. Araldi, R. P., Khalil, C., Grignet, P. H., Teixeira, M. R., de Melo, T. C., Módolo, D. G., et al. (2020). Medical applications of clustered regularly interspaced short palindromic repeats (CRISPR/Cas) tool: A comprehensive overview. Gene, 745, 144636.
     Google Scholar
  5. Arias-Fuenzalida, J., Jarazo, J., Qing, X., Walter, J., Gomez-Giro, G., Nickels, S. L., et al. (2017). FACS-Assisted CRISPR-Cas9 Genome Editing Facilitates Parkinson’s Disease Modeling. Stem Cell Reports, 9(5), 1423-1431.
     Google Scholar
  6. Banaszynski, L. A., Chen, L.-C., Maynard-Smith, L. A., Ooi, A. G. L., & Wandless, T. J. (2006). A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell, 126(5), 995-1004.
     Google Scholar
  7. Barajas, A. & Hernández, M. (2020). La bioética del sistema CRISPR-Cas9 como terapia génica en enfermedades de importancia mundial. Ciencia Huasteca Boletín Científico de la Escuela Superior de Huejutla, 8(16), 29-33.
     Google Scholar
  8. Bonini, A., Poma, N., Vivaldi, F., Kirchhain, A., Salvo, P., Bottai, D., et al. (2021). Advances in biosensing: The CRISPR/Cas system as a new powerful tool for the detection of nucleic acids. Journal of Pharmaceutical and Biomedical Analysis, 192, 113645.
     Google Scholar
  9. Capella, V. B. (2016). La revolución de la edición genética mediante CRISPR-Cas9 y los desafíos éticos y regulatorios que comporta. Cuadernos de Bioética, 19(2), 223-239.
     Google Scholar
  10. Cárdenas, R. (2019). El Derecho ante la técnica de edición genética CRISPR. Acta bioethica, 25(2), 187-197.
     Google Scholar
  11. Chávez, V. M. (2018). El sistema de edición genética CRISPR/Cas y su uso como antimicrobiano específico. Revista especializada en ciencias químico-biológicas, 21(2), 8. (Spanish).
     Google Scholar
  12. Cho, S., Shin, J., & Cho, B.-K. (2018). Applications of CRISPR/Cas System to Bacterial Metabolic Engineering. International Journal of Molecular Sciences, 19(4), 1089.
     Google Scholar
  13. Cong, L., Cox, D. B. T., Heidenreich, M., Platt, R. J., SWIECH, L., & Zhang, F. (2016). Delivery, use and therapeutic applications of the crispr-cas systems and compositions for genome editing. European Union Patent N.o EP3079725A1. Available from: https://patents.google.com/patent/EP3079725A1/en?oq=crispr+cas
     Google Scholar
  14. Cota J, Sandoval S, Gaytan Y, Diaz N, Vega B, Padilla E, Díaz N.E. (2020). Nuevos modelos transgénicos para el estudio de la enfermedad de Parkinson basados en sistemas de edición con nucleasas. Neurología; 35(7), 486-499. (Spanish).
     Google Scholar
  15. D’Astolfo, D. S., Pagliero, R. J., Pras, A., Karthaus, W. R., Clevers, H., Prasad, V., et al. (2015). Efficient intracellular delivery of native proteins. Cell, 161(3), 674-690.
     Google Scholar
  16. De Buhr, H., & Lebbink, R. J. (2018). Harnessing CRISPR to combat human viral infections. Current Opinion in Immunology, 54, 123-129.
     Google Scholar
  17. Dominguez, A. A., Lim, W. A., & Qi, L. S. (2016). Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nature Reviews. Molecular Cell Biology, 17(1), 5-15.
     Google Scholar
  18. Doudna, J. A. & Charpentier, E. (2014) The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213).
     Google Scholar
  19. Ekman F, Ojala D, Adil M, Lopez P, Schaffer D, Gaj T. (2019) CRISPR-Cas9-Mediated Genome Editing Increases Lifespan and Improves Motor Deficits in Huntington's Disease Mouse Model. Molecular Therapy - Nucleic Acids, 17;829-839.
     Google Scholar
  20. Enzmann, B. (2019). How CRISPR Is Accelerating Drug Discovery. GEN - Genetic Engineering and Biotechnology News, 39(1).
     Google Scholar
  21. Fellmann, C., Gowen, B. G., Lin, P.-C., Doudna, J. A., & Corn, J. E. (2017). Cornerstones of CRISPR-Cas in drug discovery and therapy. Nature Reviews. Drug Discovery, 16(2), 89-100.
     Google Scholar
  22. Finn, J. D., Smith, A. R., Patel, M. C., Shaw, L., Youniss, M. R., van Heteren, J., et al. (2018). A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing. Cell Reports, 22(9), 2227-2235.
     Google Scholar
  23. Foss, D. V., Hochstrasser, M. L., & Wilson, R. C. (2019). Clinical applications of CRISPR-based genome editing and diagnostics. Transfusion, 59(4), 1389-1399.
     Google Scholar
  24. Freiermuth, J. L., Powell-Castilla, I. J., & Gallicano, G. I. (2018). Toward a CRISPR Picture: Use of CRISPR/Cas9 to Model Diseases in Human Stem Cells In Vitro. Journal of Cellular Biochemistry, 119(1), 62-68.
     Google Scholar
  25. García, K., Lehka, B. J., & Mortensen, U. H. (2017). SWITCH: A dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae. Microbial Cell Factories, 16(1), 25.
     Google Scholar
  26. Gutiérrez, D. & Salazar, L. (2017) Tema 2017: CRISPR-Cas: Utilidad clínica de la edición genómica como opción terapéutica. Revista Clínica de la Escuela de Medicina UCR-HSJD, 7(6). (Spanish).
     Google Scholar
  27. Horvath, P., & Barrangou, R. (2010). CRISPR/Cas, the Immune System of Bacteria and Archaea. Science, 327(5962), 167-170.
     Google Scholar
  28. Hoy, M. A. (2019). CRISPR-Cas Genome Editing: Another Revolution in Molecular Biology. En Insect Molecular Genetics, 345-361.
     Google Scholar
  29. Hu, X. (2016). CRISPR/Cas9 system and its applications in human hematopoietic cells. Blood Cells, Molecules, and Diseases, 62, 6-12.
     Google Scholar
  30. Jaitin, D. A., Weiner, A., Yofe, I., Lara-Astiaso, D., Keren-Shaul, H., David, E., et al. (2016). Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq. Cell, 167(7), 1883-1896.e15.
     Google Scholar
  31. Jiang, C., Lin, X., & Zhao, Z. (2019). Applications of CRISPR/Cas9 Technology in the Treatment of Lung Cancer. Trends in Molecular Medicine, 25(11), 1039-1049.
     Google Scholar
  32. Kang, H., Minder, P., Park, M. A., Mesquitta, W.-T., Torbett, B. E., & Slukvin, I. I. (2015). CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus. Molecular Therapy - Nucleic Acids, 4: e268.
     Google Scholar
  33. Khan, S. H. (2019). Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome-Editing Techniques and Bioethical Concerns for Clinical Application. Molecular Therapy - Nucleic Acids, 16, 326-334.
     Google Scholar
  34. Klompe, S. E., & Sternberg, S. H. (2020). CRISPR–Cas immune systems and genome engineering. Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease, 157-177.
     Google Scholar
  35. Lammoglia, M. F., Lozano, R., García, C. D., Avilez, C. M., Trejo, V., Muñoz, R. B., et al. (2016). La revolución en ingeniería genética: Sistema CRISPR/Cas. 13.
     Google Scholar
  36. Lee, J., Bayarsaikhan, D., Arivazhagan, R., Park, H., Lim, B., Gwak, P., Lee, B. (2019). CRISPR-Cas9 Edited sRAGE-MSCs Protect Neuronal Death in Parkinson’s Disease Model. International Journal of Stem Cells, 12(1), 114-24.
     Google Scholar
  37. Luo, J., Padhi, P., Jin, H., Anantharam, V., Zenitsky, G., Wang, Q., Kanthasamy, A. G. (2019). Utilization of the CRISPR-Cas9 Gene Editing System to Dissect Neuroinflammatory and Neuropharmacological Mechanisms in Parkinson’s Disease. Journal of Neuroimmune Pharmacology, 14(4), 595-607.
     Google Scholar
  38. Ortiz-Virumbrales M, Moreno C, Kruglikov I, Marazuela P, Sproul A, Jacob S., et al. (2017) CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons. Acta Neuropathologica Communications, 5(1).
     Google Scholar
  39. Pahan K. (2019). A Broad Application of CRISPR Cas9 in Infectious, Inflammatory and Neurodegenerative Diseases. Journal of Neuroimmune Pharmacology, 14(4), 534–6.
     Google Scholar
  40. Patel, S., Ashwanikumar, N., Robinson, E., DuRoss, A., Sun, C., Murphy-Benenato, K. E., et al. (2017). Boosting Intracellular Delivery of Lipid Nanoparticle-Encapsulated mRNA. Nano Letters, 17(9), 5711-5718.
     Google Scholar
  41. Quílez, Á. (2017). Aplicaciones de CRISPR en la generación y síntesis de nuevos fármacos. MoleQla: revista de Ciencias de la Universidad Pablo de Olavide, 27, 10. (Spanish).
     Google Scholar
  42. Raschmanová, H., Weninger, A., Glieder, A., Kovar, K., & Vogl, T. (2018). Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects. Biotechnology Advances, 36(3), 641-665.
     Google Scholar
  43. Ruiz; OH. (2018). El sistema CRISPR-Cas y su aplicación en las enfermedades infecciosas. Hechos Microbiológicos, 9(1-2), 9-11.
     Google Scholar
  44. Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 39(21), 9275-9282.
     Google Scholar
  45. Scott, A. (2018). A CRISPR path to drug discovery. Nature, 555.
     Google Scholar
  46. Senturk, S., Shirole, N. H., Nowak, D. G., Corbo, V., Pal, D., Vaughan, A., Tuveson, D. A., Trotman, L. C., Kinney, J. B., & Sordella, R. (2017). Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nature Communications, 8, 14370.
     Google Scholar
  47. Shanmugam, S., Ngo, H.-H., & Wu, Y.-R. (2020). Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: A review. Renewable Energy, 149(C), 1107-1119.
     Google Scholar
  48. Shin, J., Lee, N., Cho, S., & Cho, B.-K. (2018). Targeted Genome Editing Using DNA-Free RNA-Guided Cas9 Ribonucleoprotein for CHO Cell Engineering. Methods in Molecular Biology (Clifton, N.J.), 1772, 151-169.
     Google Scholar
  49. Shipman, S. L., Nivala, J., Macklis, J. D., & Church, G. M. (2017). CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature, 547(7663), 345-349.
     Google Scholar
  50. Singh, V. (2020). An introduction to genome editing CRISPR-Cas systems. Genome Engineering via CRISPR-Cas9 System, 1-13.
     Google Scholar
  51. Smalley, E. (2016). CRISPR mouse model boom, rat model renaissance. Nature Biotechnology, 34(9), 893-894.
     Google Scholar
  52. Song, H.-Y., Chiang, H.-C., Tseng, W.-L., Wu, P., Chien, C.-S., Leu, H.-B., et al. (2016). Using CRISPR/Cas9-Mediated GLA Gene Knockout as an In Vitro Drug Screening Model for Fabry Disease. International Journal of Molecular Sciences, 17(12), 2089.
     Google Scholar
  53. Soppe, J. A., & Lebbink, R. J. (2017). Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans. Trends in Microbiology, 25(10), 833-850.
     Google Scholar
  54. Tu, Z., Yang, W., Yan, S., Guo, X., & Li, X.-J. (2015). CRISPR/Cas9: A powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Molecular Neurodegeneration, 10(1), 35.
     Google Scholar
  55. Wang, D., Mou, H., Li, S., Li, Y., Hough, S., Tran, K., et al. (2015). Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. Human Gene Therapy, 26(7), 432-442.
     Google Scholar
  56. Wilbie, D., Walther, J., & Mastrobattista, E. (2019). Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing. Accounts of Chemical Research, 52(6), 1555-1564.
     Google Scholar
  57. Xu, W. (2019). Microinjection and Micromanipulation: A Historical Perspective. Methods in Molecular Biology (Clifton, N.J.), 1874, 1-16.
     Google Scholar
  58. Xue, W., Chen, S., Yin, H., Tammela, T., Papagiannakopoulos, T., Joshi, N. S., et al. (2014). CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 514(7522), 380-384.
     Google Scholar
  59. Yao, R., Liu, D., Jia, X., Zheng, Y., Liu, W., & Xiao, Y. (2018). CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synthetic and Systems Biotechnology, 3(3), 135-149.
     Google Scholar
  60. Yen, J., Fiorino, M., Liu, Y., Paula, S., Clarkson, S., Quinn, L., et al. 2018). TRIAMF: A New Method for Delivery of Cas9 Ribonucleoprotein Complex to Human Hematopoietic Stem Cells. Scientific Reports, 8(1), 16304.
     Google Scholar
  61. Yin, H., Song, C.-Q., Dorkin, J. R., Zhu, L. J., Li, Y., Wu, Q., et al. (2016). Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology, 34(3), 328-333.
     Google Scholar
  62. Yu, W., & Wu, Z. (2020). Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Advanced Drug Delivery Reviews, S0169409X20300570.
     Google Scholar
  63. Zetsche, B., Volz, S. E., & Zhang, F. (2015). A split-Cas9 architecture for inducible genome editing and transcription modulation. Nature Biotechnology, 33(2), 139-142.
     Google Scholar
  64. Zhang, Z., Wan, T., Chen, Y., Chen, Y., Sun, H., et al. (2019). Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing. Macromolecular Rapid Communications, 40(5), e1800068.
     Google Scholar
  65. Zhang, Z.-Y., Thrasher, A. J., & Zhang, F. (2020). Gene therapy and genome editing for primary immunodeficiency diseases. Genes & Diseases, 7(1), 38-51.
     Google Scholar
  66. Jian, C., Wei, J., & Yue, P. (2016). A CRISPR-Cas9 system targeting apoCIII and its aplication. China Patent N.º CN105462968A. https://patents.google.com/patent/CN105462968A/zh?oq=crispr+cas9
     Google Scholar
  67. Zhang, J. & Qin X. (2016). Target sequence and sgRNA of human CCR5 gene recognized by CRISPR-Cas9 system in Neisseria meningitidis and its application. China Patent N.º CN105331609A. https://patents.google.com/patent/CN105331609A/en?oq=crispr+cas9
     Google Scholar
  68. Cai, Z., Mou, L., Chen, P., Xie, C., Zhang, J., Gao, H. et al, (2016). CRISPR-Cas9 specific knockout method of pig SLA-1 gene and sgRNA for specific targeting of SLA-1 gene. World Intellectual Property Organization Patent N.º WO2016197359A1. https://patents.google.com/patent/WO2016197359A1/en?oq=crispr+cas9
     Google Scholar