##plugins.themes.bootstrap3.article.main##

This study was conducted to investigate the effects of krill oil supplementation on growth performance, proximate composition and organo-somatic indices of Cyprinus carpio, reared in a recirculating aquaculture system, at different stocking densities. Four experimental diets were formulated: LD - low density (15 fish/rearing unit- 3.5 kg/m3), where fish were fed with commercial feed, HD - high density (35 fish/rearing unit-8 kg/m3 fed with commercial feed), LD-KO - low density, where fish were fed with commercial feed supplemented with 5 g/kg feed krill oil, and HD-KO- high density, were fish were fed with commercial feed supplemented with 5 g/kg feed krill oil. After 60-days of rearing, final fish weight and individual weight gain was significantly higher (P˂0.05) in fish stocked in lower density, with better values in LD-KO groups. Also, the best values of FCR, SGR and PER were obtained in LD-KO groups. Regarding the proximate composition of meat, no significant differences (P˃0.05) were registered between the experimental variants. The organo-somatic indices revealed no significant differences (P˃0.05) in the cardiosomatic index, while hepatosomatic, splenosomatic, and visceral index differed significantly (P˂0.05) between the experimental variants. Accordingly, we can conclude that supplementation of carp diet with 5 g/kg feed krill oil can improve growth performance, without any modification at proximate composition of meat.

References

  1. AOAC Official method 991.36; March (1997). Fat (Crude) In Meat & Meat products Solvent Extraction (Submersion) Method First Action 1991 Final Action 1996.
     Google Scholar
  2. Aragão, C. Gonçalves, A. T., Costas, B., Azeredo, R., Xavier, M. J., Engrola, S. (2022). Alternative Proteins for Fish Diets: Implications beyond Growth. Animal, 1-41.
     Google Scholar
  3. Castro, O., Burri, L., Nunes, A. (2017). Astaxanthin krill oil enhances the growth performance and fatty acid composition of the Pacific whiteleg shrimp, Litopenaeus vannamei, reared under hypersaline conditions. Aquacult Nutr. ,1-11.
     Google Scholar
  4. Betancor, M. B., Nordrum, S., Atalah, E. Caballero, M. J., Benítez-Santana, T., Roo, J., et al. (2012). Potential of three new krill products for seabream larval production. Aquaculture Research, 43(3), 395-406.
     Google Scholar
  5. Castro, A., Montes, M., Orihuela, M. L., Linares, J., Cota, N., Carrera, L., et al. (2019). Effect of stocking density on growth and survival of fine flounder Paralichthys adspersus (Steindachner, 1867) larvae. Latin american journal of aquatic research, 47(1), 1-8.
     Google Scholar
  6. Choi, J., Lee, K. W., Han, G.S., Byun, S., Lim, H. J., Kim, H. S. (2020). Dietary inclusion effect of krill meal and various fish meal sources on growth performance, feed utilization, and plasma chemistry of grower walleye pollock (Gadus chalcogrammus, Pallas 1811). Aquac. Rep., 17, 1-17.
     Google Scholar
  7. Christiansen, R., L., Torrissesn, O. J. (1994). Effect of astaxanthin and Vitamin A on growth and survival during first feeding of Atlantic salmon Salmo salar L. Aquaculture and Fisheries Management, 25, 903-914.
     Google Scholar
  8. Costas, B., Aragao, C., Juan Miguel Mancera, J. M., Dinis, M. T., Conceicao, L. C. (2008). High stocking density induces crowding stress and affects amino acid metabolism in Senegalese sole. Aquaculture Research, 2008, 39, 1-9.
     Google Scholar
  9. Cordeli, A. N., Oprea, L., Cretu, M., Mocanu, M. (2021). The influence of stocking densities on the growth performance of common carp (Cyprinus carpio, Linne 1758) reared in a recirculating aquaculture system. Scientific Papers. Series D. Animal Science, LXIV(1), 509-516.
     Google Scholar
  10. Coroian C. O., Miresan V., Cocan D.I., Vatu R. D., Raducu C. M., Coroian A., (2015). Growth performance of common carp (Cyprinus carpio L.) fingerlings fed with various protein levels. AACL Bioflux 8(6), 1038-1047.
     Google Scholar
  11. Dediu, L., Docan, A., Grecu, I.R., Crețu. M., Ibănescu, D.C., Râmniceanu, C., Cristea, V. (2021). The combined effects of stocking density, feeding regime, and initial size on growth performance of rainbow trout fingerlings. Scientific Papers. Series D. Animal Science, LXIV(1), 517-522.
     Google Scholar
  12. Dediu, L., Docan, A., Cretu, M., Grecu, I. R., Mogodan, A. Maereanu, M., et al. (2021). Effects of Stocking Density on Growth Performance and Stress Responses of Bester and Bester♀×Beluga♂Juveniles in Recirculating Aquaculture Systems. Animals, 11, 2292.
     Google Scholar
  13. Dekić, R., Savić, N., Manojlović, M., Golubm D., Pavličević, J. (2016). Condition factor and organosomatic indices of rainbow trout (Onchorhynchus mykiss, Wal.) from different brood stock. Biotechnology in Animal Husbandry, 32 (2), 229-237.
     Google Scholar
  14. Dong-Kyu, K., Kyoung-Duck, K., Joo-Young, S. and Sang-Min, L. (2012). Effects of Dietary Lipid Source and Level on Growth Performance, Blood Parameters and Flesh Quality of Sub-adult Olive Flounder (Paralichthys olivaceus), Asian Australasian Journal of Animal Sciences, 25(6), 869-79,
     Google Scholar
  15. El-Sayed, A. F., Dickson M. W., El Naggar, G. O. (2015). Value chain analysis of the aquaculture feed sector in Egypt. Aquaculture, 437, 92-101.
     Google Scholar
  16. Enache, I. Cristea, V., Ionescu, T., Placintă. S. (2011). The influence of stocking density on the growth of common carp, Cyprinus carpio, in a reciculating aquaculture system. AACL Bioflux, 4(2), 146-153.
     Google Scholar
  17. Espinoza-Ramos, L. A., Quispe-Mayta, J. M., Chili-Layme, V., Nande, M. (2022). Effect of Stocking Density on Growth, Feed Efficiency, and Survival in Peruvian Grunt Anisotremus scapularis (Tschudi, 1846): From Fingerlings to Juvenile. Aquac. J., 2, 13–22.
     Google Scholar
  18. Everson, I. (2008). Krill: Biology, Ecology and Fisheries. Hoboken, NJ: John Wiley & Sons.
     Google Scholar
  19. Food and Agriculture Organization of the United Nations (FAO). (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome.
     Google Scholar
  20. Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C., Cao, L. (2018). Feed conversion efficiency in aquaculture: Do we measure it correctly? Environ. Res. Lett. 13, 079502.
     Google Scholar
  21. Fujita, T., Satake, M., Watanabe, T., Kitajima, C., Miki, W., Yamaguchi, K. et al. (1983). Pigmentation of cultured red sea bream with astaxanthin diester purified from krill oil. Bull. Jpn. Sot. Sci. Fish., 49, 1855-1861.
     Google Scholar
  22. Gaber, M. A. (2005). The effect of different levels of krill meal supplementation of soybean-based diets on feed intake, digestibility, and chemical composition of juvenile Nile tilapia Oreochromis niloticus L, J. World Aquac. Soc., 36, 346-353.
     Google Scholar
  23. Global Seafood Aliance (2022, September 1). https://www.globalseafood.org/advocate/new-evidence-suggests-antarctic-krill-meal-is-a-promising-and-responsibly-harvested-aquafeed-alternative/
     Google Scholar
  24. Gokcek, C. K. & Akyurt, I. (2007). The effect of stocking density on yield, growth, and feed efficiency of Himri Barbel (Barbus luteus) nursed in cages. Israeli J. Aquacul., 59, 99-103.
     Google Scholar
  25. Hansen, J. Ø., Shearer, K. D., Øverland, M., Penn, M. H., Krogdahl, A., Mydland., L. T., Storebakken, T. (2011). Replacement of LT fish meal with a mixture of partially deshelled krill meal and pea protein concentrates in diets for Atlantic salmon (Salmo salar),” Aquaculture, 315(3-4), 275-282.
     Google Scholar
  26. Hayat, M., Nugroho, R. A., Aryani, R. (2018). Influence of different stocking density on the growth, feed efficiency, and survival of Majalaya common carp (Cyprinus carpio Linnaeus 1758), F1000 Research, 7, 1-9,
     Google Scholar
  27. Ibrahim, A., Shimizu, C., Kono, M. (1984). Pigmentation of cultured red sea bream, Chrysophrys major, using astaxanthin from Antartic krill, Euphausia superba, and a mysid, Neomysis sp. Aquaculture, 38, 45-57.
     Google Scholar
  28. Jamu, D. M., & Ayinla, O. A. (2013). Potential for the development of aquaculture in Africa. NAGA 26:9-13. Journal of Agricultural Research. 5 (22), 3096-3101.
     Google Scholar
  29. Kiranpreet, K., Trond, M. K., Benitez-Santana, T., Burri, L. (2022). Effects of Antarctic Krill Products on Feed Intake, Growth Performance, Fillet Quality, and Health in Salmonids. Aquaculture Nutrition, 1-14.
     Google Scholar
  30. Krogdahl, A., Ahlstrom, O., Burri. L., Nordrum. S., Dolan, L., Bakke, A. M., et al. (2014). Antarctic krill meal as an alternative protein source in pet foods evaluated in mink (Neovison vison). II. Growth. Dovepress, 43-56.
     Google Scholar
  31. Kousoulaki, K., Rønnestad, I., Olsen, H. J., Rathore, R., Campbell, P., Nordrum, S., et al. (2013). Krill hydrolysate free amino acids responsible for feed intake stimulation in Atlantic salmon (Salmo salar), Aquaculture Nutrition, 19, 47-61,
     Google Scholar
  32. Leatherland, J. F., & Cho, C. Y. (1985). Effect of rearing density on thyroid and interrenal gland activity and plasma and hepatic metabolite levels in rainbow trout, Salmo gairdneri Richardson. J. Fish Biol., 27, 583-592.
     Google Scholar
  33. Mocanu, M., Cristea, V., Dediu, L., Dicu, D., Docan, A., Ionescu, T., (2011). The influence of different stocking densities on growth performances of Oncorhynchus mykiss (Walbaum, 1792) in a recirculating aquaculture system, Volume of Scientific Papers - Animal Science Series, 56 (16), 326-331.
     Google Scholar
  34. Montero, D., Izquierdo, M. S., Tort, L., Robaina, L., Vergara, J. M. (1999). High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles. Fish Physiol. Biochem. 20, 53-60.
     Google Scholar
  35. Morimoto Kofuji, P. Y., Hosokawa, H., Masumoto, T. (2006). Effects of dietary supplementation with feeding stimulants on yellowtail Seriola quinqueradiata (Temminck & Schlegel; Carangidae) protein digestion at low water temperatures, Aquacult. Res., 37, 366-373.
     Google Scholar
  36. Mørkøre, T., Moreno, H. M., Borderías, J., Larsson, T., Hellberg, H., Hatlen, B., et al. (2020). Dietary inclusion of Antarctic krill meal during the finishing feed period improves health and fillet quality of Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 124, 418-431.
     Google Scholar
  37. Ntanzi, R., Bwanika, G., Eriku, G. (2014). The Effects of Stocking Density on the Growth and Survival of Nile Tilapia (Oreochromis niloticus) Fry at Son Fish Farm, Uganda. J. Aquac. Res. Development, 5, 2.
     Google Scholar
  38. Nunes, A. J. P., Soares, A. N., Sabry-Neto, H., Burri, L. (2020). Effect of dietary graded levels of astaxanthin krill oil and high protein krill meal on the growth performance and stress resistance of postlarval Litopenaeus vannamei under hyper-intensive nursery culture. Aquacult Nutr. 1-15.
     Google Scholar
  39. Ravichandran, S., Kumaravel, K., Florence, E. P. (2011). Nutritive composition of some edible fin fishes. International Journal of Zoological Research, 7(3), 241-251.
     Google Scholar
  40. Saleh, R., Burri, L., Benitez-Santana, T., Turkmen, S., Castro, P., Izquierdo, M. (2018). Dietary krill meal inclusion contributes to better growth performance of gilthead seabream juveniles. Aquaculture Research, 49(10), 3289-3295.
     Google Scholar
  41. Sankian, Z., Khosravi, S., Kim, Y. O., Sang-Min, L. (2019). Total replacement of dietary fish oil with alternative lipid sources in a practical diet for mandarin fish, Siniperca scherzeri, juveniles. Fish Aquatic Sci., 22(8), 1-9.
     Google Scholar
  42. Storebakken T. (1988). Krill as a potential feed source for salmonids,” Aquaculture, 70(3), 193-205.
     Google Scholar
  43. Sargent, J. R., Tocher, D. R., Bell, J. G. (2002). The lipids. In: Halver, J.E. & Hardy, R. W. (Eds.). Fish nutrition. Elsevier Science, New York, 181-257.
     Google Scholar
  44. Tavares-Dias, M., Martins, M. L., Moraes, F. R. (2000). Relacao hepatossomatica e esplenossomatica em peixes teleosteos de cultivo intenso. Rev Bras Zool., 171, 273-281.
     Google Scholar
  45. Trenzado, C. E., Morales, A. E., De la Higuera M. (2006). Physiological effects of crowding in rainbow trout, Oncorhynchus mykiss, selected for low and high-stress responsiveness. Aquaculture 258, 583-593.
     Google Scholar
  46. Torrissen, O. J. P. (1989). Pigmentation of salmonids: interactions of astaxanthin and canthxanthin on pigment deposition in rainbow trout. Aquaculture, 79, 363-374.
     Google Scholar
  47. Xiuling, L., Liu, B., Liu, B., Zhang, N., Guo, L., Zhu, K., et al. (2019). Growth Performance, Lipid Deposition and Serum Biochemistry in Golden Pompano Trachinotus Ovatus (Linnaeus, 1758) Fed Diets with Various Fish Oil Substitutes. The Israeli Journal of Aquaculture - Bamidgeh, 1-11.
     Google Scholar
  48. Yoshitomi, B., Aoki, M., Oshima, S. I., and. Hata, K. (2006). Evaluation of krill (Euphausia superba) meal as a partial replacement for fish meal in rainbow trout (Oncorhynchus mykiss) diets. Aquaculture, 261(1), 440–446.
     Google Scholar