Phenotypic Determination of Biofilm Formation and Acquired Resistance Profile of Clinically-Derived Bacterial Isolates

##plugins.themes.bootstrap3.article.main##

  •   Muhammad M Ibrahim

  •   Abubakar Shettima

  •   Ibrahim Y. Ngoshe

  •   Musa Ibn Abbas

  •   Hauwa S. Bello

  •   Askira M. Umoru

  •   Tom M. Isyaka

Abstract

Infections caused by biofilm forming bacteria is of major public health concern because of its association with multi-resistance to antimicrobial drugs and host defenses, leading to chronic and recurrent infections. Here, using Congo red agar method, Kirby-bauer disk diffusion technique and the consensus criteria of the European Centre for Disease Control (ECDC) and Centre for Disease Control (CDC), we determined the acquired resistance profile of biofilm producing phenotypes of clinically derived bacteria, classified as Multidrug resistant (MDR), extensively drug resistant (XDR) and Pandrug resistant (PDR). Fifty (50) de-identified bacterial isolates, comprising of five different species (Staphylococcus aureus, Escherichia coli, Proteus spp, Klebsiella pneumoniae and Pseudomonas aeruginosa) were sampled for the study. 64.0% of these isolates were observed to produce biofilms. Isolates recovered from urine samples (50.0%) were the most significant biofilm producers, chief among which was Staphylococcus aureus (15.6%) (X2=0.52; p<.05; P=0.9714). 78.0% of the biofilm producing phenotypes were atleast multidrug resistant (31.4% MDR; 31.4% XDR; 15.7% PDR) (f= 0.40678; df=3; p<.05; P=0.7502). Extreme forms of acquired resistance (XDR and PDR) was more pronounced among biofilm producing strains than the non-biofilm producing strains, and was statistically significant (f=5.0; p=.026336; df=14; p<.05). All Staphylococcus aureus and Pseudomonas aeruginosa isolates were atleast multidrug resistant, with the biofilm producing strains of the latter being completely resistant to Gentamicin and Ciprofloxacin. As such, it can be deduced that resistance to multiple antimicrobial drugs is more pronounced among biofilm producing phenotypes of clinically derived bacterial isolates.


Keywords: Antimicrobial resistance, Biofilm, Clinical Bacteria, Multidrug resistance

References

L. Hall-Stoodley, W. J. Costerton, and P. Stoodley, “Bacterial biofilms: from the natural environment to infectious diseases,” Nature Reviews Microbiology vol. 2, pp. 95-108, February 2004. https://doi.org/10.1038/nrmicro821.

G. Peters, R. Locci, and G. Pulverer, “Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters,” Zentralb. Bacteriol. Mikrobiol. Hyg, vol. 173, no. 5, pp. 293–299. May 1981. https://pubmed.ncbi.nlm.nih.gov/6792814/.

M. D. Rodney, “Biofilms and device-associated infections,” Emerg. Infect. Dis, vol. 7, no. 2, pp. 277-281, April 2001. https://pubmed.ncbi. nlm.nih.gov/11294723/.

C. Koch, and N. Hoiby, “Pathogenesis of cystic fibrosis,” Lancet, vol. 341, pp. 1065–1069, April 1993.https://www.sciencedirect.com/science/article/abs/pii/014067369392422P.

P. K. Singh, A. L. Schaefer, M. R. Parsek, T. O. Moninger, M. J. Welsh, and E. P. Greenberg, “Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms”, Nature, vol. 407, pp. 762–764, October 2000. doi: 10.1038/35037627. https://pubmed.ncbi.nlm.nih. gov/11048725/.

J. W. Costerton, J. Lam, K. Lam, and R. Chan, “The role of the microcolony mode of growth in the pathogenesis of Pseudomonas aeruginosa infections”, Rev. Infect. Dis. vol. 5, pp. S867–S873, December 1983. doi: 10.1093/clinids/5 supplement_5. s867. https://pubmed.ncbi.nlm.nih .gov/6419312/

J. Lam, R. Chan, K. Lam, and J. W. Costerton, “Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis”, Infect Immun, vol. 28, pp. 546–556, May 1980. http://iai.asm.org/

M. M. Ibrahim, I. Adam, U. M. Garba, and S. Shuaibu. “Multiple-drug Resistance among Biofilm-producing Phenotypes of Nosocomial Escherichia coli,” Microbiology Research Journal International, vol. 25, no. 5, pp. 1-8, December 2018. https://doi.org/10.9734/MRJI/2018/45696

M. Sugano, H. Morisaki, Y. Negishi, Y. Endo-Takahashi, H. Kuwata, T. Miyazaki, et al. “Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms,” J. Liposome Res, vol. 26, no. 2, 156–162, July 2015. doi.org/10.3109/08982104.2015.1063648.

J. N. Ander, J. Zahller, and P.S. Stewart, “Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to Ampicillin and Ciprofloxacin,” Antimicrob. Agents Chemother, vol 47, pp. 1251–1256, April 2003.

C. A. Fux, S. Wilson, and P. Stoodley, “Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model,” J Bacteriol, vol. 186, no. 14, pp. 4486–4491, July 2004. doi: 10.1128/JB.186.14.4486-4491.2004.

S. J. Liaw, Y. L. Lee, and P. R. Hsueh, “Multidrug resistance in clinical isolates of Stenotrophomonas maltophilia: roles of integrons, efflux pumps, phosphoglucomutase (SpgM), and melanin and biofilm formation,” Int. J. Antimicrob. Agents, vol. 35, no. 2, pp. 126– 130, November 2010. doi: 10.1016/j.ijantimicag.2009.09.015.

O. Gefen, B. Chekol, J. Strahilevitz, and N. Q. Balaban, “TDtest: easy detection of bacterial tolerance and persistence in clinical isolates by a modified disk-diffusion assay,” Sci. Rep, vol. 7, pp. 41284, February 2017. https://www.nature.com /articles /srep41284.

S. Singh, S. K. Singh, I. Chowdhury, and R. Singh, “Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents,” Open Microbiol J, vol. 11:53–62. April 2017. doi: 10.2174/1874285801711010053.

M. Cheesebrough, District Laboratory Practice for Tropical Countries, 2nd ed, Cambridge University Press, U.K.: 2006, pp. 71-124.

J. Freeman, F. R. Falkiner, and C. T. Keane, “New method for detecting slime production by coagulase negative staphylococci,” J Clin Pathol, vol. 42, pp. 872-4, August 1989. doi: 10.1136/jcp.42.8.872.

CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.

A. P. Magiorakos, A. Srinivasan, R. B. Carey, Y. Carmeli, M. E. Falagas, C. G. Giske, et al. “Multidrug‐resistant, extensively drug‐resistant and pandrug‐resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance,” Clinical microbiology and infection, vol. 18, no. 3, pp. 268-281, March 2012. https://doi.org/10.1111/j.1469-0691.2011.03570.x.

M. Gashaw, M. Berhane, S. Bekele, G. Kibru, L. Teshager, Y. Yilma, et al. “Emergence of high drug resistant bacterial isolates from patients with health care associated infections at Jimma University medical center: a cross sectional study,” Antimicrobial Resistance & Infection Control, vol. 7, no. 1, pp. 138, November 2018. https://doi.org/10.1186/s13756-018-0431-0.

C. J. Sanchez, K. Mende, M. L. Beckius, et al. “Biofilm formation by clinical isolates and the implications in chronic infections,” BMC Infect Dis, vol. 13, pp. 47, January 2013. https://doi.org/10.1186/1471-2334-13-47.

M. Hussain, M. H. Wilcox, and P. J. White, “The slime of coagulase-negative staphylococci: biochemistry and relation to adherence,” FEMS Microbiol Rev, vol. 10, pp. 191–207, April 1993. doi: 10.1111/j.1574-6968.1993.tb05867.x

B. H. Ziran, “Osteomyelitis,” J Trauma, vol. 62, pp. 59-60, June 2007. PMID:17556977; doi:10.1097/TA.0b013e318065abbd.

N. K. Archer, J. Mark, J. Mazaitis, W. Costerton, G. Jeff, E. Shirtliff, et al. “Staphylococcus aureus biofilms. Properties, regulation and roles in human disease”, Virulence, vol. 2, no. 5, pp. 445-459, October 2011. http://dx.doi.org/10.4161/viru.2.5 .17724.

B. M. Peters, M. A. Jabra-Rizk, M. A. Scheper, J. G. Leid, J. W. Costerton, and M. E. Shirtliff, “Microbial interactions and differential protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms,” FEMS Immunol Med Microbiol, vol. 59, pp. 493– 503, August 2011. doi: 10.1111/j.1574-695X.2010.00710.x.

C. Trappetti, E. van der Maten, Z. Amin, A. J. Potter, A. Y. Chen, P. M. van Mourik, et al. “Site of isolation determines biofilm formation and virulence phenotypes of Streptococcus pneumoniae serotype 3 clinical isolates,” Infection and immunity, vol. 81, no. 2, pp. 505-513, February 2013. doi: 10.1128/IAI.01033-12.

J. C. Nickel, I. Ruseska, J. B. Wright, and J. W. Costerton, “Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material,” Antimicrobial Agents and Chemotherapy, vol. 27, no. 4, pp. 619–624, April 1985.

Choong S. and Whitfield, H. “Biofilms and their role in infections in urology,” BJU International, vol. 86, no. 8, pp. 935–941, November 2000. doi: 10.1046/j.1464-410x.2000.00949.x.

Tambyah, P. A. “Catheter-associated urinary tract infections: diagnosis and prophylaxis,” International Journal of Antimicrobial Agents, vol. 24, supplement 1, pp. S44–S48, September 2004. doi: 10.1016/j.ijantimicag.2004.02.008.

##plugins.themes.bootstrap3.article.details##

How to Cite
Ibrahim, M. M., Shettima, A., Ngoshe, I. Y., Ibn Abbas, M., Bello, H. S., Umoru, A. M., & Isyaka, T. M. (2020). Phenotypic Determination of Biofilm Formation and Acquired Resistance Profile of Clinically-Derived Bacterial Isolates. European Journal of Biology and Biotechnology, 1(4). https://doi.org/10.24018/ejbio.2020.1.4.51

Most read articles by the same author(s)