Bactericidal Properties of Bacillus Subtilis Nanoparticles Against Selected Human Pathogens
Article Main Content
The use of biologically synthesized nanoparticles has been an area of research interest in recent times. Due to the high rate of bacterial resistance to antibiotics, there is a need to search for a more potent alternative to ineffective antibiotics. This study aims to evaluate the antibacterial effects of silver nanoparticles synthesized by Bacillus subtilis against Pseudomonas aeruginosa and Staphylococcus aureus. Silver nanoparticles were obtained by dissolving 0.842 gram of AgNO3 silver nitrate into 100ml of B. subtilis in Mueller Hinton broth. The antibacterial susceptibility of the nanoparticles formed was carried out using standard methods. Comparative antibacterial test was also carried out using standard antibiotics The multiple antibiotic resistance index were also determined. The zones of inhibition were 29 and 12 mm against Staphylococcus aureus and Pseudomonas aeruginosa respectively after 8 hrs of nanoparticle synthesis. The antibiotic susceptibility test using standard antibiotics revealed that S. aureus was sensitive to only Erythromycin and ofloxacin with a zone of inhibition of 15mm and 9mm respectively while P. aeruginosa was sensitive only to ofloxacin. The Multiple resistance index (MARi) shows P aeruginosa to have MARi of 0.9 while S, aureus has MARi of 0.82. The result indicated that B. subtilis nanoparticles presented better antibacterial properties than standard antibiotic and can be explored as a candidate for drug production to fight bacterial resistance to antibiotics.
References
-
F. AbdulQuais, A. Shafiq. F.M. Husain, R.A. Khan, B. Alenazi, A.A.salme and I. Ahmad. Antibacterial effect of silver nanoparticles synthesized using Murray Koenigii (L0 against multidrug resistant pathogens. Bioorganic Chemistry and Applications. 2019. Article ID 4649506, 11 pages.
Google Scholar
1
-
SCENIHR. Request for a scientific opinion on the Appropriateness of existing Methodologies to assess the potential Risk Associated with Engineered and adventitious Nanotechnologies. SCENIHR/02/05. Brussies European Commission. Scientific committee on emerging and newly identified health risks.
Google Scholar
2
-
S. Shahzadi, N. Zafar and R. Sharif. Antibacterial activity of metallic nanoparticles. Antibacterial Activity of Metallic Nanoparticles, Bacterial Pathogenesis and Antibacterial Control, Sahra, IntechOpen, DOI: 10.5772/intechopen.72526. Available from: https://www.intechopen.com/books/bacterial-pathogenesis-and-antibacterial-control/antibacterial-activity-of-metallic-nanoparticles 2018.
Google Scholar
3
-
K. M. Varie, M. Gudeppu, A. Chinnasamy, S. Thangarajan, J. Balasubramanian, Y. Li, B. Gajendran. Nanoparticles: Antimicrobial Applications and Its Prospects. Advanced Nanostructured Materials for Environmental Remediation pp 321-355. 2019.
Google Scholar
4
-
L. Wang, C. Hu, L. Shao. The antimicrobial activity of nanoparticles ; Present situation and prospects for the future. International Journal of Nanomedicine. 12, 1227-1249 2017, 2014.
Google Scholar
5
-
S. N. Zafar and R. Sharif. Antibacterial activity of metallic nanoparticles. Bacterial Pathogenesis and Antibacterial Control. 2018. Sahara Intech Open. DOI;1057726.
Google Scholar
6
-
P. Thuesombat, S. Hannongbua, S. Akasit, and S. Chadchawan, “Effect of silver nanoparticles on rice (OryzasativaL. cv.KDML 105) seed germination and seedling growth,” Ecotoxicology and Environmental Safety, vol. 104, pp. 302–309, 2014.
Google Scholar
7
-
Y. Houri-Haddad, A. Domb, W. Khan, and R. Hazan. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials. Evidence-Based Complementary and Alternative Medicine Volume 2015, Article ID 246012 ,2015.
Google Scholar
8
-
A. Khezerlou, M. Alizadeh-Sani, M. Azizi-Lalabadi, Microbial pathogenesis. Elsevier (123), 2018, Pages 505-526.
Google Scholar
9
-
W. Seo, S. Lee, J.H. Sun, X, Suzuki, Y. Mann Z. Liu and M. Terashima. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Natural Materials; 5: 12: 976-6. 2006.
Google Scholar
10
-
A. Chokriwal, M. M. Sharma, A. Singh. Biological Synthesis of Nanoparticles using Bacteria and their Applications. 2014. American Journal of Pharmtech Research. 2014; 4(6).
Google Scholar
11
-
L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future, Int. J. Nanomedicine 12 (2017) 1227.
Google Scholar
12
-
S. Y. Liau, D. C. Read, W. J. Furr and A. D. Russell. ’Interaction of silver nitrate with readily identifiable groups relationship to the antibacterial action of silver ions’’ Letters in Applied Microbiology,1999 25 (4) pp. 279-283.
Google Scholar
13
-
K. B. Narayanana, and N. Selvaraj. Biological synthesis of metal nanoparticles by microbes. Digest Journal of Biostructure. 2010. 5 (1); 135-140.
Google Scholar
14
-
X. Zhang, L. Alexander, G. C. Hegeri, P. Jones, T. Peterson, B. G. Trewin and Z. Wiers. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere, 2011. 82(4): p. 489-494.
Google Scholar
15
-
T. Klaus, R. Joerger, E. Olsson, C.G. Granqvist (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614.
Google Scholar
16
-
A. Nanda and M. Saravanan. Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE’. Journal of Biotechnology. 77: 214– 218. 2010.
Google Scholar
17
-
A. S. Reddy, C. Y. Chen., C. C. Chen, J. S. Jean., C. W. Fan., H. R. Chen., J. C. Wang., V. R. Nimje. Synthesis of gold nanoparticles via an environmentally benign route using a biosurfactant. J. Nanosci. Nanotechnol. 2009. 9: 6693–6699.
Google Scholar
18
-
W. Wei, X. Mao, L.A. Ortiz, D. R. Sadoway. Oriented silver oxide nanostructures synthesized through a template-free electrochemical route. J Mater Chem 21:432–438. 2011.
Google Scholar
19
-
R.S. Soumya, and P.G. Hela. Nano silver based targeted drug delivery for treatment of cancer. Der Pharmacia Lettre, 2013. 5(4): pp. 189-197, 2013.
Google Scholar
20
-
V. Mulens, M.P/ Morales and D.F. Barber. Development of magnetic nanoparticles for cancer gene therapy: a comprehensive review. 2013 ISRN Nanomaterials.
Google Scholar
21
-
I. Sondi, and B. Salopek-Sondi. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science, 2004. 275(1): 177-182.
Google Scholar
22
-
P. Sistani, L. Sofimaryo, Z. R. Masoudi, A. Sayaa, R.Rahimzadeh. A Penicillin Biosensor by Using Silver Nanoparticles. Int. J. Electrochem. Sci.,9 (2014) 6201 -6212. 2014.
Google Scholar
23
-
B. K, Salunke, S. S, Sawant, S. I, Lee, B. Kim. Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 2015. 99(13):5419-27.
Google Scholar
24
-
E. Guihen and J.D. Glennon. Nanoparticles in separation science—recent developments. Analytical letters, 2003. 36 (15): 3309-3336.
Google Scholar
25
-
B. Blasiak, F.C. Van Veggel and B. Tomanek. Applications of nanoparticles for MRI cancer diagnosis and therapy. Journal of Nanomaterials: 2013. p. 12.
Google Scholar
26
-
M. Jeyaraj, G. Sathiskumar, G. Sivanandhan, D. Muburakali, R. Arun, G Kapildev, M. Manickkavaagam, Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids and surfaces B: Biointerfaces, 2013. 106: p. 86-92.
Google Scholar
27
-
M. Mohammad N. Sistani1, A. Montazeri, R. Yazdani1and H Murtomaa New oral health literacy instrument for public health: development and pilot testing. Journal of investigative and clinical dentistry 5(4), 2013.
Google Scholar
28
-
M. Cheesebrough. Microbiological test. District Laboratory Practice in Tropical countries. 2000. pp 1-226,
Google Scholar
29
-
A. W, Bauer, W. M, Kirby, J. C, Sherris, M. Turck. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology. 1966 .45:493–496.
Google Scholar
30
-
R.R. Banala., V. B. Nagati. And P. R. Karnati. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi Journal of Biological Sciences. 2015. Volume 22, Issue 5, pp 637-644.
Google Scholar
31
-
S. S. Shankar, A. Ahmad, and M. Sastry. Geranium leaf assisted biosynthesis of silver nanoparticles. , (2003). Biotechnology. Progress, 19, 1627–163.
Google Scholar
32
-
B. Perez, M. Paul, P. Bazerque Antibiotic assay by Agar-well diffusion method”. Biological and medical experiment. pp 113-115. 2006.
Google Scholar
33
-
P. H. Krumpermann, Multiple Antibiotic Resistance Indexing of Escherichia Coli to Identify High-Risk Sources of Fecal Contamination of Foods. Appl Environ Microbiol. 1983 Jul; 46(1): 165–170.
Google Scholar
34
-
C. Ranganath, L. Renata, F. SaDel Fiol and M. Victor. Prospects for the Use of New Technologies to Combat Multidrug-Resistant Bacteria” Frontiers in Pharmacology. 10: 46-57, 2012.
Google Scholar
35
-
K. Kalishwaralal, S. Ramkumarpandian, D. Venkataraman and H. Nellaiah. xtracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. .2008. Materials Letters 62(29):4411-4413.
Google Scholar
36
-
M. R. Saker, K. N. Islam, H. Z. Kuri, M. Raiman. Studies of the Impact of Occupational Exposure of Pharmaceutical Workers on the Development of Antimicrobial Drug Resistance. Journal of Occupational Health 2014. 56: 260–270.
Google Scholar
37
-
S. F. Van Vuuren, Antimicrobial Activity of South African Medicinal Plants J Ethnopharmacol. 2008 Oct 28;119 (3):462-72. 2008.
Google Scholar
38
-
L. L Lifongo, F. Ntie-Kang, C. V. Simoben, and A. B. Babiaka. A Bioactivity Versus Ethnobotanical Survey of Medicinal Plants from Nigeria, West Africa. Natural Product Bioprospect. 2014. 4;1-9.
Google Scholar
39
-
E. A. Palombo, Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases. Evidence based Complementary and Alternative Medicine 2011; |Article ID 680354 | 15 pages.
Google Scholar
40
-
B. Khameneh, R. Diab, K. Ghjazvini, and B. S. Bazza, Breakthroughs in Bacterial Resistance Mechanisms and the Potential Ways to Combat Them. Microbial Pathogens 2016. ; 95:32-42. 2016).
Google Scholar
41
-
T. Rasamiravaka, Q. Labtani, P. Duez, M. El Jaziri. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomedical Research International. 2015; 2015759348. doi: 10.1155/2015/759348.
Google Scholar
42
-
F. A. Martinez, J. M. Momingue, A. Converti, R. P. Oliveira, Production of bacteriocin-like inhibitory substance by Bifidobacterium lactis in skim milk supplemented with additives. Journal of Dairy Research. 2015; 82 (3):350–355.
Google Scholar
43
-
A. P, Magiorakos, A. Srinivasan, R. B. Carey, Y. Carmeli, M. E. Falagas, C. G. Giske. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical and Microbiology of Infections. 2012; 18(3):268–81.
Google Scholar
44
-
M. A. Pfaller, R. N. Jones, G. V. Doern, K. Kugler. Bacterial pathogens isolated from patients with bloodstream infection: frequencies of occurrence and antimicrobial susceptibility patterns from the SENTRY antimicrobial surveillance program (United States and Canada, 1997).
Google Scholar
45
-
M. Brandon, M.J. Dowzicky. Antimicrobial susceptibility among gram-positive organisms collected from pediatric patients globally between 2004 and 2011: results from the trigecycline evaluation and surveillance trial. Journal of Clinical Microbiology 51 (2013), pp. 2371-2378.
Google Scholar
46
-
F. Furno , K. S. Morley, B. Wong, B. L. Sharp, P. L. Arnold, S.M. Howdley, R. Bayston,, P.D. Brown, P.D. Winship and H.J. Reid. Silver Nanoparticles and Polymeric Medical Devices: A New Approach to Prevention of Infection? 2004. Journal of Antimicrobial Chemotherapy. 54 (6): 1019-1024.
Google Scholar
47
-
K. Soo-Hwan, L. Hyeong-Seon, R. Deok-Seon, C. Soo-Jae, and L. Dong-Seok. Antibacterial Activity of Silver-nanoparticles Against Staphylococcus aureus and Escherichia coli” Korean Journal Microbiology and Biotechnology. 2011. 39: 77–85.
Google Scholar
48
-
A. Shahverd, A. Fakhimi, R. Shahverdi, S. Minaian. “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli” Journal of Nanomedicine. 2007. 3(2):168-71.
Google Scholar
49
-
S. Shirley, T. Bera, A. Roy, G. Singh, P. Ramachandrarao and D. Dash. Characterization of enhanced antibacterial effects of novel silver nanoparticles”. Journal of Nanotechnology. 2010. 18: 103-112.
Google Scholar
50
-
M. Mohsen, G. El- Santiel, H. Gaafar, H. El-Gendy, E. El-Beltagi, “Nutritional evaluation of berseem”. Journal of Zootechnica, 2011. 2: 66-75.
Google Scholar
51
-
M. I. Husseiny, M. Abd El- Aziz, Y. Badr and M. A. Mahmoud. Biosynthesis of Gold Nanoparticles Using Pseudomonas aeruginosa Spectrochim Acta A Mo Biomol Spectrosc 2006. 2007 67(3-4):1003-6.
Google Scholar
52
-
D. S. Karaman S. Manner, A. Fallarero, and J. M. Rosenholm. , Current Approaches for Exploration of Nanoparticles as Antibacterial Agents 2017. Antibacterial Agents, Ranjith N. Kumavath, Intech Open, DOI: 10.5772/68138.
Google Scholar
53
Most read articles by the same author(s)
-
A. O. Daniels,
T. Temikotan,
A. O. Akinkugbe,
D. Ibiyemi,
Catalase Activity and Hydrophobicity Test of Bacteria Susceptible to Extracts of Cleistopholis Patens and Piliostigma Reticulatum , European Journal of Biology and Biotechnology: Vol. 1 No. 3 (2020)





