University of Uyo, Nigeria
University of Uyo, Nigeria
University of Uyo, Nigeria
* Corresponding author
Nigerian Building and Road Research Institute, Nigeria

Article Main Content

This study evaluated using 16S rDNA gene-based metagenomics technique the populations of bacteria and archaea in digestate samples from lab-scale anaerobic bioreactors digesting pretreated and untreated coconut husk fiber, pineapple floret and banana stem. Result of biodegradability experiment indicated high microbial activity in digestate (biogas slurry), with untreated banana stem having the highest total solids (TS) and volatile solids (VS) removal efficiencies of 78.3 % and 92.9 % respectively. Similarly, all pretreated substrates exhibited higher TS and VS losses with corresponding TS (77.8 %) and VS (87.2 %) removal efficiencies. This TS and VS removal rates signaled increased rate of organic matter decomposition with concomitant biogas productivity. Diversity comparisons performed between samples showed rich microbial diversity in untreated sample than the pretreated sample. Taxonomic composition revealed that, for untreated samples at the phylum level, the bacterial community was predominantly Firmicutes (relative abundance 97.0 %), with 0.30 % Actinobacteria and 0.10 % Proteobacteria. The genus Oxobacter (35.0 %), Clostridium (12.0 %) and Ethanoligenens (10.0 %) were ubiquitous and abundant in the untreated sample. The archaeal community was however dominated by the Euryarchaeota with one methanogenic order Methanomicrobiales, and a high abundance of the genera Thermacetogenium. For pretreated samples, at the phylum level, bacterial community was also dominated by Firmicutes (95.0 %), followed by Proteobacteria (1.02 %), Actinobacteria (0.18 %) and Tenericutes (0.06 %). The genus Clostridium (41.0 %), Ethanoligenens (29.0 %) and Lactobacillus (15.0 %) were also ubiquitous and abundant in the pretreated sample. Archaeal community was also dominated by Euryarchaeota with the two methanogenic orders Methanomicrobiales and Methanosarcinales dominating. The major microbial groups were hydrolyzing and fermenting populations. These findings revealed rich microbial assemblage and diversity among microbial communities in biogas digestate.

References

  1. Ndubuisi-Nnaji, U. U., Ofon, U. A., Asamudo, N. U. and Ekong, V. M. (2020a). Enhanced biogas and biofertilizer production from anaerobic codigestion of harvest residues and goat manure. Journal of Scientific Research and Reports, 26(3): 1-13.
     Google Scholar
  2. Eduok, S., John, O., Ita, B., Inyang, E and Coulon, F. (2018). Enhanced biogas production from anaerobic co-digestion of lignocellulosic biomass and poultry faeces using source separated human urine as buffering agent. Frontiers in Environmental Science, 6: 67. doi: 10.3389/fenvs.2018.00067.
     Google Scholar
  3. Ndubuisi-Nnaji, U. U., Ofon, U. A., Ekponne, N. I and Offiong, N. O. (2020b). Improved biofertilizer properties of digestate from codigestion of brewer’s spent grain and palm oil mill effluent by manure supplementation. Sustainable Environment Research, 30(1): 1-11.
     Google Scholar
  4. Dinuccio, E., Balsari, P., Gioelli, F and Menardo, S. (2010). Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresource Technology, 101(10): 3780-3783. doi: 10.1016/j.biortech.2009.12.113.
     Google Scholar
  5. Ndubuisi-Nnaji, U. U., Ofon, U. A., Inyang-Enin, A. O and Georgina N. Ananso. (2020c). Enhanced Biogas Production from Anaerobic Codigestion of Lignocellulosic Waste for Efficient Bioenergy Utilization in Heating and Combustion Engine. Advances in Research, 21(1): 11-21. DOI: 10.9734/AIR/2020/v21i130178.
     Google Scholar
  6. Qiao, J. T., Qiu, Y. L., Yuan, X. Z., Shi, X. S., Xu, X. H., & Guo, R. B. (2013). Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw. Bioresource Technology, 143: 512-518.
     Google Scholar
  7. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicel, P. and van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 59(5): 927-934.
     Google Scholar
  8. Orhorhoro, E. K., Ebunilo, P. O. and Sadjere, G. E. (2017). Experimental determination of effect of total solids (TS) and volatile solids (VS) on biogas yield. American Journal of Modern Energy. 3: 131-135. doi: 10.11648/j.ajme.20170306.13.
     Google Scholar
  9. Gabor, E., Liebeton, K., Niehaus, F., Eck, J. and Lorenz, P. (2016). Updating the metagenomics toolbox. Journal of Biotechnology, 2: 201-206.
     Google Scholar
  10. Atawodi, S. E., Atawodi, J. C. and Dzikwi, A. A. (2010). Polymerase chain reaction: theory, practical and application: a review. Sahel Medical Journal, 13(2): 54-63.
     Google Scholar
  11. Sekiguchi, Y., Kamagata, Y., Syutsubo, K., Ohashi, A., Harada, H and Nakamura, K. (1998). Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology, 144: 2655–2665.
     Google Scholar
  12. Cha, G. C., Chung, H. K. and Kim, D. J. (2001). Characteristics of temperature change on the substrate degradation and bacterial population in one-phase and two-phase anaerobic digestion. Environmental Engineering Resources, 6: 99–108.
     Google Scholar
  13. Demirel, B. and Scherer, P. (2008). The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Review in Environmental Science and Biotechnology, 7: 173–190.
     Google Scholar
  14. Franke-Whittle, I. H., Goberna, M., Pfister, V and Insam, H. (2009). Design and development of the anaerochip microarray for investigation of methanogenic communities. Journal of Microbiological Methods, 79: 279–288.
     Google Scholar
  15. Wilkins, D., Rao, S., Lu, X. and Lee, P. K. H. (2015). Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion. Frontiers in Microbiology, 6: 1114 – 1124.
     Google Scholar
  16. Anukam, A., Mohammadi, A., Naqvi, M. and Granström, K. (2019). A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. MDPI Processes, 7(504): 1-19. doi:10.3390/pr7080504.
     Google Scholar
  17. Lynd, L. R., Weimer, P. J., van Zyl, W. H. and Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Review, 63(6): 506-577.
     Google Scholar
  18. Kovács, E., Wirth, R., Maróti, G., Bagi, Z., Rákhely, G. and Kovács, K. L. (2013). Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition. PLoS ONE 8(10): 1–18.
     Google Scholar
  19. Chen, Y. and Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Journal of Microbiology and Molecular Biology Review, 61: 262–280.
     Google Scholar
  20. De Bok, F. A., Harmsen, H. J., Plugge, C. M., de Vries, M. C., Akkermans, A. D., de Vos, W. M and Stams, A. J. (2005). The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. International Journal of Systematic Evolution and Microbiology, 55: 1697–1703.
     Google Scholar
  21. Singleton, P. (2006). Acetogenesis: In Dictionary of Microbiology and Molecular Biology, 3rd ed.; John Wiley: Hoboken, New Jersey, USA, 2006; ISBN 978-0-470-03545-0.
     Google Scholar
  22. Verma, S. (2002). Anaerobic Digestion of Biodegradable Organics in Municipal Solid Wastes. Master’s Thesis, Columbia University, New York, USA, pp. 1-56.
     Google Scholar
  23. Slonczewski, J. L and Foster, J. W. (2014). Microbiology: An Evolving Science 3; W.W. Norton and Company: New York, USA, 51p.
     Google Scholar
  24. Zverlov, V. V., Ko¨ck, D. E. and Schwarz, W. H. (2015). The role of cellulose-hydrolyzing bacteria in the production of biogas from plant biomass. Microorganisms in Biorefineries, Microbiology Monographs, 26: 335-361. doi: 10.1007/978-3-662-45209-7_12.
     Google Scholar
  25. Krause, L., Diaz, N. N., Edwards, R. A., Gartemann, K. H., Kro¨meke, H., Neuwger, H., Pu¨hler, A., Runte, K. J., Schlu¨ter, A., Stoye, J., Szczepanowski, R., Tauch, A and Goesmann, A. (2008). Taxonomic composition and gene content of a methane producing microbial community isolated from a biogas reactor. Journal of Biotechnology, 136: 91–101.
     Google Scholar
  26. Schlüter, A., Bekel, T., Diaz, N. N., Dondrup, M., Eichenlaub, R., Gartemann, K. H., Krahn, I., Krause, L., Kro¨meke, H., Kruse, O., Mussgnug, J. H., Neuweger, H., Niehaus, K., Pu¨hler, A., Runte, K. J., Szczepanpwski, R., Tauch, A., Tilker, A., Vieho¨ver, P and Goessmann, A. (2008). The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analyzed by the 454-pyrosequencing technology. Journal of Biotechnology, 1(136): 77–90.
     Google Scholar
  27. Kröber, M. S., Bekel, T., Diaz, N and Goesman, A. I (2009). Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. Journal of Biotechnology, 142(1):38-49. doi: 10.1016/j.jbiotec.2009.02.010.
     Google Scholar
  28. Wirth, R., Kovacs, E., Maroti, G., Bagi, Z., Rakhely, G and Kovacs, K. L. (2012) Characterization of a biogas producing microbial community by short-read next generation DNA sequencing. Biotechnology for Biofuels, 5(1): 41.
     Google Scholar
  29. Krumholz, L. R and Bryant, M. P. (1985). Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. International Journal of Systematic and Evolutionary Microbiology, 35: 454–456. doi:10.1099/00207713-35-4-454.
     Google Scholar
  30. Bengelsdorf, F. R., Poehlein, A., Schiel-Bengelsdorf, B., Daniel, R and Dürre, P. (2015). Genome sequence of the acetogenic bacterium Oxobacter pfennigii DSM 3222T. Genome Announcement, 3(6): e01408-15. doi:10.1128/genomeA.01408-15.
     Google Scholar
  31. Pavlostathis, S. G., Miller, T. L and Wolin, M. J. (1988). Fermentation of insoluble cellulose by continuous cultures of Ruminococcus albus. Applied Environmental Microbiology, 54: 2655–2659.
     Google Scholar
  32. El Kaoutari, A., Armougon, F., Gordon, J. I., Raoult, D and Henrissat, B. (2013). The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. National Review in Microbiology, 11(7): 497-504.
     Google Scholar
  33. Drissi, F., Raoult, D and Merhej, V. (2016). Metabolic role of Lactobacilli in weight modification in humans and animals. Microbial Pathogenesis, 106: 182-194.doi: 10.1016/j.micpath.2016.03.006.
     Google Scholar
  34. Amanda, M., Lucas, S., Iranildo, F and Valmir, L. (2017). Metabolism and physiology of Lactobacilli: a review. Journal of Environmental Analysis and Progress, 2(2): 125-136. doi: 10.24221/jeap.2.2.2017.1202.115-124.
     Google Scholar
  35. Pessione, E. (2012). Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Frontiers in Cell Infection Microbiology, 2(86): 1-15. doi.org/10.3389/fcimb.2012.00086.
     Google Scholar
  36. Salvetti, E., Torriani, S and Felis, G. E. (2012). The genus Lactobacillus: a taxonomic update. Probiotics Antimicrobial Proteins, 4(4): 217-226. doi:10.1007/s12602-012-9117-8
     Google Scholar
  37. Abdel-Rahman, M. A., TAshton, Y and Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advancement, 31(6): 877-902. doi:10.1016/j.biotechadv.2013.04.00.
     Google Scholar
  38. Lee, J., Jang, Y. S., Han, M. J., Kim, J. Y and Lee, S. Y. (2016). Deciphering Clostridium tyrobutyricum metabolism based on the whole-genome sequence and proteome analyses. American Society for Microbiology, 7(3): e00743-16. doi: 10.1128/mBio.00743-16.
     Google Scholar
  39. Lee, H. S., Vermaas, W. F and Rittmann, B. E. (2010). Biological hydrogen production: prospects and challenges. Trends in Biotechnology, 28 (5): 262–271.doi: 10.1016/j.tibtech.2010.01.007.
     Google Scholar
  40. Meherkotay, S and Das, D. (2008). Biohydrogen as a renewable energy resource-prospects and potentials. International Journal Hydrogen Energy, 33 (1): 258–263. doi: 10.1016/j.ijhydene.2007.07.031.
     Google Scholar
  41. Christy, P. M., Gopinath, L. R and Divya, D. (2014). A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, 34 (6): 167–173. doi: 10.1016/j.rser.2014.03.010.
     Google Scholar
  42. Lu, L. and Ren, Z. J. (2016). Microbial electrolysis cells for waste biorefinery: a state of the art review. Bioresource Technology, 215: 254–264. Dionisi, D. and Silva, I.M.O. (2016). Production of ethanol, organic acids and hydrogen: an opportunity for mixed culture biotechnology? Reviews in Environmental Science and Biotechnology, 15 (2): 213–242. doi.org/10.1007/s11157-016-9393-y.
     Google Scholar
  43. Lu, Q., Yi, J. and Yang, D. (2016). Comparative analysis of performance and microbial characteristics between high-solid and low-solid anaerobic digestion of sewage sludge under mesophilic conditions. Journal of Microbiology and Biotechnology, 26(1): 110 – 119.
     Google Scholar
  44. Li, Z., Liu, B., Cui, H., Ding, J., Li, H., Xie, G., Ren, N and Xing, D. (2019). The complete genome sequence of Ethanoligenens harbinense reveals the metabolic pathway of acetate-ethanol fermentation: A novel understanding of the principles of anaerobic biotechnology. Environment International, 131: 105053. https://doi.org/10.1016/j.envint.2019.105053.
     Google Scholar
  45. Thauer, R. K., Zinkhan-Mi11er, D and Spormann, A. M. (1989). Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annual Review in Microbiology, 43: 43-67.
     Google Scholar
  46. Jetten, S. M. M., Stams, J. M. A. and Zehnder, J. B. A. (1992). Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. Federation of European Microbiological Societies, 88(4): 181-198. doi.org/10.1111/j.1574-6968.1992.tb04987.x.
     Google Scholar
  47. Kengen, S. W. M., Daas, P. J. H., Duits, E. F. G., Keltjens, J. T., Van der Drift, C and Vogeis, G. D. (1992). Isolation of a 5-hydroxybenzimidazolyl cobamide-containing enzyme involved in the metbyltetrahydromethanopterin: coenzyme M metbyltransferase reaction in Methanobacterium thermoautotmphicum. Biochimica et Biophysica. Acta, 1118: 249-260. doi:10.1016/0167-4838(92)90282-i.
     Google Scholar
  48. Dimarco, A. A., Bobik, T. A. and Wolfe, R. S. (1990). Unusual co-enzymes of methanogenesis. Annual Review in Biochemistry, 59: 355-394. doi.org/10.1146/annurev.bi.59.070190.002035.
     Google Scholar
  49. Jablonski, P. E and Ferry, J. G. (1991). Purification and properties of methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila. Journal of Bacteriology, 173(8): 2481-2487. doi: 10.1128/jb.173.8.2481-2487.1991.
     Google Scholar